
  

  
Abstract—In this paper, the behavior of limit cycles in 

second-order autonomous system will be analyzed based on the 
behavior of some appropriate equipotential curves which will 
be considered around the same limit cycles. In fact two sets of 
equipotential curves are considered so that a set of the 
equipotential curves has a role as the upper band of the system 
trajectories and another set plays a role as the lower band. It 
will be shown that the stability of the limit cycles in system can 
be assessed using the behavior of these two set of equipotential 
curves. It will be shown that asymptotic stability, semi-stability 
and instability of the limit cycles or oscillation behavior in the 
system need to analyze both the lower and upper bands set of 
the equipotential curves. The method can even detect a stable 
limit cycle appearing in the oscillation systems. The method is 
geometric and suitable for second-order nonlinear autonomous 
systems. Finally, some examples will be presented to verify the 
presented method.  
 

Index Terms—Limit cycle, geometric, stability, nonlinear.  
 

I. INTRODUCTION 
As we know, two basic methods are essentially used to 

analyze the behavior of limit cycles in nonlinear system [1], 
[2]. The first method is to draw the trajectories of the system 
using the softwares such as Matlab in order to detect the limit 
cycles in the system. It is clear that the limit cycles detected in 
this approach can be recognized as stable, unstable or 
semi-stable [1], [3]. The second method is based on the 
linearization of the system around its equilibrium point or 
points. The second method has two major weaknesses. Firstly, 
if the equilibrium point of the system around which the 
system is linearized is on the limit cycle or in a small 
neighbor of it, the method may be effective otherwise the 
method can not detect the real behavior of the nonlinear 
system. Secondly, the method can only assess the behavior of 
the system around the limit cycle as the form of point to point 
if and only if these points all locate on the limit cycle [1]. In 
other word, all equilibrium points have to locate on the limit 
cycle and as we know this case is very seldom to happen. The 
proposed method mentioned in this paper is a geometric 
method which is more suitable for nonlinear autonomous 
systems. This kind of systems is very important because it 
models the behavior of some devices such as oscillators [4]. 
There are some researches proposing geometric method to 
design appropriate second-order nonlinear autonomous 
systems in order to realize and manufacture devices such as 
oscillators [3]. Also there are some researches presenting 
geometric methods to analyze the stability and behavior of 
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some systems [5] - [9]. 
 

II. INVARIANT SET AND EQUIPOTENTIAL CURVES 
Consider the nonlinear autonomous system described by 

the following equations 
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Definition 1: A set is said “compact” if it is bounded and 
closed [1], [3]. 

Definition 2: Consider the set called P so that 2RP ⊂ , 
P is said “invariant set” if the trajectories of the system 
beginning in the P remain in it as ∞→t  [1], [10], [11].  

Definition 3: Suppose that the 0=X  is the equilibrium 
point of the second-order autonomous system described b y 
the equation (1) and suppose that the compact set called M 
includes the equilibrium point (the origin). The closed curves 
belonging to M, which are described by Cxxu =),( 21  so 

that RC ∈ , and enclosing the equilibrium point are called 
equipotential curves because for each value of C  there is a 
closed curve with the potential of C , so all points locating 
on the Cxxu =),( 21  have the equal potential the numerical 

quantity of which is C  [3]. 
  

III. LIMIT CYCLE AND STABILITY ANALYSIS 
Definition 4: A limit cycle is said asymptotic stable if all 

trajectories in vicinity of the limit cycle converge to it 
as ∞→t . Otherwise the limit cycle is said semi-stable or 
unstable [1], [11].  

Theorem 1: Consider the second-order autonomous system 
(1), suppose that no equilibrium point belongs to the compact 
set M which encloses the origin ( 0=X ). Furthermore 
assume that there are equipotential curves 1211 ),( Cxxu = , 

and 2212 ),( Cxxu =  with clockwise directions, enclosing 
the origin and satisfying the following inequalities 

0),( 211 >
dt

xxdu
                          (2) 

0),( 212 <
dt

xxdu
.                             (3) 

Then there exists an asymptotic stable limit cycle L so that 

Ω⊂ intL                                 (4) 
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where )21,( CCΩ is the region located between  

1211 ),( Cxxu =  and 2212 ),( Cxxu = . 
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Proof:  From 1211 ),( Cxxu = , we have   and as a result, 

the dynamic of  1211 ),( Cxxu =  can be expressed as 
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Consider the velocity vector on the 1211 ),( Cxxu =  

symbolized  by  
1uV , from (6) we obtain that 
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where 
1xu and 

2xu are the unique vectors of the 1x axis and 

2x axis respectively. Also, the velocity vector of the system 

(1) symbolized by X  can be obtained as 

21
),(),( 212211 xx uxxfuxxfX += .                         (8)  

The partial derivative 
dt

xxdu ),( 211  can be expressed 

asand the right hand of above equation can be written as  
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where the right hand of the above equation is the algebraic 
value of the vector product. ,So the inequality (2) can be 
written as and this means that the direction of the trajectories 
of the system (1) are to the outside of the equipotential curves 

1211 ),( Cxxu =  as shown in Fig. 1. In the similar manner 
the inequality (3) can be expressed as  

0
1

>× XVu                    (11) 

 

0
2

<× XVu                                             (12) 

where
2uV is the velocity vector on the 2212 ),( Cxxu =  

and this means that the direction of the trajectories of the 
system (1) are to the inside of the equipotential curves 

1211 ),( Cxxu =  as shown in Fig. 1. On the other hand there 
is no equilibrium points belonging to M and consequently 

to ),( 21 CCΩ , so there is an asymptotic stable limit 

cycle L so that Ω⊂ intL . 
Example 1: Consider the following nonlinear system 
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By choosing, for 5.20 1 << C , it can be seen that not 

only the equipotential curves 1211 ),( Cxxu =  are closed 

but also 0),( 211 >
dt

xxdu
. Also, by choosing  
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1211 2
1

4
1),( Cxxxxu =+=  

2
24

2 22
1

14
1)2,1( Cxxxxu =+=  

, for 25.2 C< , it can be seen that not only the 

equipotential curves 2212 ),( Cxxu =  are closed but also 

0),( 212 <
dt

xxdu
, so there is an asymptotic stable limit 

cycle locating between the  1211 ),( Cxxu =  and 

2212 ),( Cxxu = . The area locating between 

1211 ),( Cxxu =  and 2212 ),( Cxxu =  is an invariant set 
expressed by the following set 
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So that 5.25.20 21 ><< CandC .It is clear that the 

limit cycle can be estimated by varying 1C and 2C  in (14). 

In above invariant set, by increasing 1C and decreasing 2C , 
the asymptotic stable limit cycle can be earned as  

5.222
1

14
1 24 =+ xx  

 

IV. CONTROL OF LIMIT CYCLE USING STATE FEEDBACK 
Consider the nonlinear autonomous system described by 

the following equations 
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where *
1u and *

2u are the control inputs as the form of state 
feedback presented by the following equations 
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 Now, the question is that how ),( 211 xxh and  

),( 212 xxh  must be chosen so that an asymptotic stable limit 
cycle can be added to the system (15)?  

Using (9), the condition 
0),( 211 >

dt
xxdu

of the theorem 
(1) can be earned as the following inequalityand in the similar 

manner the 0),( 212 <
dt

xxdu
, which appeared in theorem 

(1), can be expressed as  

0),,(),(),,(),( *
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2

211*
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1

211 >+ uxxf
dx

xxduuxxf
dx

xxdu          

(17) 

0),,(),(),,(),( *
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2
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1
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xxduuxxf
dx

xxdu .       (18) 

The equations (17) and (18) give the conditions which 

have to be satisfied by *
1u , *

2u , ),( 211 xxu and 

),( 212 xxu in order to appear an asymptotic limit cycle in the 
system (15). 

Example 2: Consider the following system 
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It is clear that the equilibrium point at the origin is 

asymptotic stable. Now, the state feedback lows ( *
1u and *

2u ) 
have to be determined so that an asymptotic stable limit cycle 
can be added to the resulted closed loop system. By choosing 
equipotential curves asand replacing (20) and (21) in (17) 
and (18) respectively, the following inequalities are earned 
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It can be derived from (22) and (23) that 
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By choosing the state feedback lows as the form of the 
following equations and replacing in (24) and (25), the 
following inequalities are earned as the conditions that must 
be satisfied in order to appear an asymptotic limit cycle in the 
system (15) 
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The inequalities (27) and (28) both are satisfied, when 

3
143 ≤≤ β .                                (29) 

It also follows from the theorem 1 that the asymptotic 
stable limit cycle called L and added to the system (15) using 
state feedback appears in the following region 

{ }14412),( 8
2

2
121 ≤+≤⊂ xxxxL  .             (30) 

 
Fig. 1.   The system has an asymptotic stable limit cycle. 

 

V. CONCLUSIONS 
The method presented in this paper was a geometric 

method which is suitable for nonlinear autonomous systems. 
It can be seen that the equipotential curves presented in this 
paper are the same energy functions presented by lyapunov to 
analyze the stability of the equilibrium points in systems. In 
fact the innovation of this paper is to present a geometric 
method to recognize the limit cycles of the nonlinear 
autonomous systems.   
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