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Abstract—Regular-expression is widely used in various 

network applications, such as a network intrusion detection 

system (NIDS). However, existing regular-expression process 

does not meet required throughput in core routers because most 

of NIDSs have been implemented by software. In particular, a 

pattern matching function, a part of regular-expression 

processing, requires comparatively longer processing time. 

Huge amounts of patterns are used for this pattern matching in 

NIDS. Therefore, high-throughput processing modules are 

strongly required in order to execute a large number of 

complicated regular-expression. In this paper, a simple but 

effective hash-based architecture of pattern filtering with 

special entries is discussed, and it enables to achieve a large 

number of patterns matching. 

 
Index Terms—Network processor, regular-expression, 

pattern matching, hash 

 

I. INTRODUCTION 

Regular-expression is used in various areas such as 

Network Intrusion Detection System (NIDS) and 

content-based analysis. For example of NIDS, Snort [1] and 

Bro [2] are representative NIDS and they utilize 

regular-expression stored in pattern files. However, their 

processing throughput is still very narrow and it deteriorates 

network service quality. Main reasons of this slow 

performance is enormous amounts of patterns used in a 

matching process includes complex regular-expressions. 

As an enhancement of this content-based analysis, XML 

based routing [3]–[5] is studied. This XML-based router uses 

the information in a payload of a packet for its routing. 

Service-oriented router [6] is a leading edge project that 

proposes a special router for enhancing network services and 

user experience. XML router and Service-oriented router 

require quick update of regular-expression patterns, 

especially when it is used in a highly real time service such as 

action-history analysis and research of real-time popularity 

[6]. To meet the requirements for the high-speed pattern 

matching, hardware architecture for processing the enormous 

amounts of patterns effectively is needed. 

Some works have been conducted to propose the 

accelerating methods of regular-expression processing 

[7]–[10]. All of them utilize Deterministic Finite Automaton 
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(DFA)-based or Nondeterministic Finite Automaton 

(NFA)-based device, which has reconfigurable architecture. 

Aho- Corasick method is a fundamental algorithm of these 

proposed accelerators. In such DFA/NFA-based systems, 

circuits for state transition machine are frequently rewritten 

when the patterns of regular-expression are updated. The 

DFA/NFA-based processing of regular-expression takes 

large processing cost if it is used in a system, which requires 

frequent updates of pattern. In this paper, we propose a 

mechanism for narrowing down the cost of pattern matching 

included in regular-expressions processing. This mechanism 

is composed of three different functions effectively. This 

mechanism can reduce the area cost because of its simple 

structure and enhance the regular-expression performance 

and its updating performance. 

 

II.  RELATED WORK 

Because of the increase in communication traffic over the 

Internet, a regular-expression, which depends on total 

throughput of NIDS, is becoming more important. To meet 

the requirements of the efficient regular-expression 

processing, several studies have achieved, especially 

proposes of hardware accelerators are key solution to attain 

high-throughput regular-expression processing. 

Some proposes use NFA-based architecture [8] in order to 

achieve parallel processing. Although the NFA-based 

hardware can process many patterns at the same time, it 

requires frequent reconfiguration of circuits for updating 

rules of NIDS and it makes a lot of overhead. Titan IC 

System and LSI corp. have manufactured NFA/DFA–based 

processor optimized for regular-expression processing [11], 

[12]. 

Meanwhile, Z. Baker has proposed DFA-based 

architecture in order to reduce the overhead caused by 

frequent update of patterns. The DFA-based hardware can 

update pattern files only by updating memory. However, 

Baker's DFA-based architecture has a limitation in its 

scalability because its next transit state can be set uniquely. 

This feature increases the number of states exponentially if it 

is used for complex regular-expression processing. Therefore, 

hardware architectures which only use such DFA-based 

architecture are not suited for processing enormous amount 

of patterns including complex regular-expressions. 

As another approach, hash-based pattern matching is 

proposed. Hash-based pattern matching is appropriate for 

processing multiple patterns because hash can reduce the 

number of candidate patterns efficiently. Some of these 

works utilizes Bloom filter [13]. Bloom filter is a 

space-efficient probabilistic data structure and it requires 
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many hash functions. There are two methods to prepare 

memory for hash. One is multiple access method that uses 

only one hash memory and asserts multiple accesses to the 

memory. This method costs a lot of processing steps of 

memory accesses. The other method uses multiple hash 

memory for permitting pipe-line processing. This method 

costs the amount of hardware resources. These defects of 

Bloom filter are pointed out by G. Papadopoulos [14]. 
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Fig. 1. (a) Structure of regular-expression processor; (b) Hardware architecture 

 

Additionally, perfect hashing function is studied as one of 

the approaches to hash-based pattern matching [15]. Perfect 

hash function enables to distribute hash collisions, and 

ideally it can prevent hash collisions. Although perfect hash 

function is an efficient method to narrow down the number of 

candidates, the update cost is higher than other methods. This 

method cannot be used in the system which requires 

frequently reconfiguration for rebuilding hash tree. As an 

enhancement of perfect hashing function, HashMem, a 

hash-based architecture, is proposed [14]. This architecture 

costs a lot of hardware because hash table should be prepared 

for every length of pattern. Another HashMem is also 

proposed, which reduces hardware cost by dividing long 

pattern into short one. However, it needs other circuits for 

aggregating divided hash values and for matching check and 

could not solve the problem of hardware cost enough. 

Furthermore, commercial processor for efficient 

processing of character strings is manufactured for personal 

computer. Intel Core i7 has instruction set called as String & 

Text New Instructions (STTNI) as an extension of SSE 

(Streaming SIMD Extensions) 4.2. The instruction set is for 

accelerating analysis of XML and it enables efficient 

processing of regular-expressions [16]. However, the 

processor is not suited for processing the enormous amount 

of patterns because it does not have any special hardware for 

high-speed processing of patterns. 

 

III. ARCHITECTURE OF PROPOSED PRE-FILTERING HASH 

MODULE FOR REGULAR-EXPRESSION PROCESSOR 

Our idea is to design special hash-table according to a 

target application. To achieve effective distribution of 

hash-memory accesses, preprocess of network traffic and 

statistical analysis were conducted. As first, proposed 

architecture of regular-expression processor is shown in Fig. 

1(a). User-defined rule sets, described by using a 

regular-expression, are compiled in software layer. The 

software outputs entries of Hash tables and the instructions 

for the exact matching modules. The hash table selects one 

instruction from instructions memory. Scheduler, filtering 

module and exact matching modules are implemented by 

using hardware, because they require high-throughput 

processing. To accomplish the high-throughput processing, 

SoC (System on Chip) architecture is indispensable for a 

network processor. Fig. 1(b) shows the hardware architecture 

of the regular-expression processor from the viewpoint of its 

processing order. Exact matching modules are a micro 

controller based string matching hardware. Scheduler is 

resource management hardware of the exact matching 

modules. The following paragraph explains the filtering 

module.  

The filtering module determines potential matches 

between lexical string of packet stream and target string by 

using a hash table. This module consists of CRC generator 

and index memory, as shown in Figure 1(b). CRC generator 

makes a hash of input string. The hash value is used as an 

address of index memory. Each entry of the index memory 

has two types of data. One is a Boolean value that implies that 

additional process of exact match is required. The other is an 

address of instruction memory that points the start address of 

dedicated exact-match-handling program stored in the exact 

matching module. When the Boolean value indicates that the 

additional exact match is required, the start address of 

instruction memory is sent to the exact matching module. 

These CRC generators and index memory become big 

because the set of CRC generator and index memory is 

separately implemented according to the pattern length of 

target string. One CRC generator and index memory can 

handle only one length of string. For reducing the hardware 

cost of this hash memory, three different methods are 

proposed as following. 

A. Case-Insensitive Approach 

When supporting both case sensitive and case insensitive 

pattern matching, two different CRC generator and hash 

memory are required. However, 81% of the snort pattern sets 

specifies the case-insensitive switch as a contents option. For 

this reason, enough filtering performance can be achieved 

only when case-insensitive function is implemented in 

filtering module. In addition, accuracy of detection is not 

eliminated because the case-sensitive matching can be 

followed after the case-insensitive matching. 

International Journal of Information and Electronics Engineering, Vol. 2, No. 5, September 2012

673



  

B. Shortening the length of Hashing 

Some of ASCII character patterns in Snort exceed over 

100 characters. If CRC module in filtering module is 

implemented individually as different hash modules of 1 to 

100 characters, the large size of CRC modules and Index 

memory may cause a problem when implemented. The main 

purpose of the filtering module is to reduce the processing 

cost of following exact matching module, and it is enough to 

find a possibility of potential match in the filtering module. In 

this meaning, full-length pattern matching is not required 

because to check first limited characters is enough to find the 

possibility of a potential match. As shown in Fig. 2, matching 

pattern that has longer pattern length has smaller number of 

matches. This proofs that long matching pattern is not 

significant in reducing processing cost of the exact matching 

module. For this reason, the filtering module can distinguish 

the potential match by using a hash function that only checks 

first several characters. 

 

 
Fig. 2. Relation between pattern length and the number of match patterns 

 

C. Use of Associated Options 

Snort allows using several options in its patterns, for 

example, port number, IP address, and search range of 

pattern matching, and other parameters derived from the 

Internet traffic. The filtering module can eliminate the 

number of matches if the module effectively utilizes these 

options. Since the number of kicks of processes at an exact 

matching module can decrease, the number of the exact 

matching modules can be reduced. To use these options, the 

entries of index memory should be extended. The 

architecture of the improved filtering module is shown in Fig. 

3. The difference between the original filtering module and 

the improved filtering module is a behavior of a header 

analyzer. It extracts information of a destination port, 

destination IP, etc. In particular, the location of processing 

should be counted in order to use the search range option that 

indicates the end of the matching process. By comparing the 

information including the counter, port number and IP 

address with the entry information of the corresponding 

index memory, advanced filtering process on the exact 

matching module can be achieved according to the 

previously calculated bit entries. Proposed filtering module 

also enables effective resource distribution of the exact 

matching module at the scheduler. 

This sophisticated hash memory based filtering module 

can eliminate the number of processing modules of exact 

matching. If the hash memory can reduce the cost of 

processing on the exact matching module up to 80%, the 

required number of processing module becomes 20% of 

originally required number. Though the area cost of this hash 

memory becomes large when the hash table has all the 

information of the counter, port number, IP address, and 

other information included in Snort option, the method to 

reduce the hash table is shown next. 
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Fig. 3. Improved filtering module block diagram 

 

D.  Compression of Managing Options in Hash Memory 

Reduction of the size of hash memory, namely the 

selection of effective set of option and the reduction of 

managing size of the option, are discussed by using 

snortrules-snapshot-2.8. 

1) Selection of Snort options 

In this evaluation, general ASCII code based on 4,881 

significant snort patterns without binary search were selected. 

These pattern sets contain the option of destination port 

number and IP address. The percentage of a pattern sets that 

specify destination port was 81%. The percentage of a pattern 

sets that specify destination address was 51%. These two 

options were the most dominant options in the pattern sets. In 

addition, the search range option is also useful because it can 

terminate the matching process in the middle of processing. 

We select these three options as the most dominant option in 

the snort rule sets. 

2) Compression of bit-length 

Even if the filtering module selects three options to 

manage in a hash memory, it still requires large memory size. 

32bits for IP address, 16bits for port number, and 16bits for 

length are needed. Totally, additional 64bits entry is required 

and it enlarges the size of hash memory drastically. We 

analyzed the most effective compression of the information 

by analyzing each option of Snort. 

To reduce the bit length of port number option, the port 

number of Snort option was analyzed. The analysis result in 

Table I indicates that the information of destination port 

number can be compressed to 2-bit information which 

expresses four groups of port number, such as port 80, other 

port, any port and false. The false group means mismatch and 

such mismatched information is excluded from the target 

pattern. Though it is desirable to divide the probability into 

33% for each when considering the distribution of hash 

memory, port 80 (www) is dominant and this division is 

understandable in this situation. 

To reduce the bit length of destination IP, the existing 

probability of destination IP in Snort pattern was analyzed in 

Table II. It is enough to use only one-bit information that 

indicates destination address is included in internal network 

or in any other network and is almost perfectly divides the 

probability into half and half. 

Finally, to reduce the bit length of starting point of a search 
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in a data stream, we analyzed the frequency of usage of the 

starting point option in Snort. To eliminate the number of 

candidate that kicks the process of the exact matching 

module, a pattern with comparatively shorter length should 

be filtered. It means small number of starting point should be 

remained in this reduction process. This is also shown in Fig. 

3 and it proofs that a pattern with shorter length is frequently 

accessed. According to this fact, the dominant starting point 

in such a sort patterns is shown in Table III. This result 

indicates that the bit length of starting point can be 

compressed to 2-bit information. The existing probability of 

Start from 1st character or start from 2-11th character is small 

but is dominant in network traffic as described. Totally, Snort 

option can be expressed by using 5-bit information in an 

entry of hash table. 

 
TABLE I: DOMINANT DESTINATION PORT NUMBER 

Destination Port Ratio 

80 57% 

Other 24% 

Any 19% 

 
TABLE II: DOMINANT DESTINATION IP 

Destination IP Ratio 

Internal network 51% 

Any 49% 

 
TABLE III: DOMINANT STARTING POINT IN SHORT PATTERNS 

Starting point of search scope Ratio 

Any 50% 

Start from 40th character 40% 

Start from 1st character 8% 

Start from 2-11th character 1% 

 

IV. EVALUATION OF PROCESSING COST 

In this section, we evaluate the number of matches in order 

to validate the efficiency of the proposed method and confirm 

the result of hardware cost reduction. As a packet stream, we 

used 500 streams (13MB) captured on the gateway router of 

our laboratory. The specifications of destination port number 

and destination address of the stream are shown in Table IV 

and Table VII. 

 
TABLE IV: SPECIFICATION OF A DESTINATION IP 

Destination IP Ratio 

Internal network 30% 

External network 70% 

 
TABLE V: SPECIFICATION OF A DESTINATION PORT 

Destination Port Ratio 

80 97% 

The other port 3% 

A. Case-Insensitive Approach 

Result of case-insensitive approach is shown in Fig. 4.  In 

figure, y-axis means the improving rate of the proposed 

method compared of case-insensitive CRC module with the 

original method that has both case-sensitive and 

case-insensitive CRC module. The rate of improvement is 

limited at most about 20%. The overall incensement of the 

number of matches is about 1.6%. 

 

 
Fig. 4. Improvement rate of match frequency 

B. Shortening the length of Hashing 

The relation between the length of hashing pattern and the 

number of process kicks in exact matching module is shown 

in Fig. 5. Y-axis denotes the improving rate of the proposed 

method compared with the original method in the number of 

kicks. If the hashing length is restricted to five characters, the 

number of matches will increase about 1.4% of the cases, 

which did not limit the hashing length. 

 

 
Fig. 5. Relation between hashing pattern length and the number of kicks 

 
Fig. 6. Relation between match frequency and combination of options 

 

C. Use of Associated Options 

The relation between the number of process kicks in exact 

matching module and combination of options is shown in Fig. 

6. Y-axis denotes the improving rate of proposed the method 

compared with the original method in the number of kicks as 

well as Fig. 5. Normal means the case when an option is not 

used. Dip specifies a destination IP address. Range specifies 

the starting point option of Snort. Dport specifies a 

destination port. The number of kicks is improved and it can 

be eliminated to the 20% to 4% of original method. 

 
 

 

 

 

International Journal of Information and Electronics Engineering, Vol. 2, No. 5, September 2012

675



  

TABLE VI: SELECTION OF BIT WIDTH OF CRC 

# of patterns 1 2 3-5 6-11 12-23 24-47 48-95 
96- 

191 

192- 

383 

384- 

767 

768- 

1535 

1536-

3071 
3072- 

Bit widths 4 5 6 7 8 9 10 11 12 13 14 15 16 

 
TABLE VII: IMPLEMENTATION RESULT 

Design 
Fluctuations in the 

number of kicks 

CRC generator 

[µm2] 

Index Memory Size 

[kbyte] 

Area Cost 

[µm2] 
Performance 

Original 100% 86,373 184 161,216 1 

+insensitive 102% 43,187 92 80,609 2.0 

+insensitive +prefix (5) 103% 1,128 100 41,804 3.7 

+insensitive +option 4% 43,187 129 95,659 42 

+insensitive +prefix (5) +option 5% 1,128 140 58,074 56 

 

 

 kicks of# costArea 1 = design original of ePerformanc

design original of ePerformanckicks of# costArea 1 = ePerformanc




                                     (1) 

 

V. EVALUATION OF HARDWARE COST 

This section focuses on the hardware cost of CRC 

generator and Index memory.  In this evaluation, we designed 

the proposed method by using the verilog Hardware 

Description Language, and we use Synopsys Design 

Compiler 2008.09 as a logic synthesis tool. In our design, we 

used the 45-nm process technology by synthesis library 

called freePDK [17]. As a pattern length, more than 2-byte 

length of pattern is used. In this evaluation, the hardware cost 

of CRC generator and index memory in each technique is 

compared. The word length of an index memory is set to 10 

bits (1bit Boolean + 9bit for the address of instruction) in the 

original method that does not use Snort rule option. By 

contrast, It becomes 14 bits (5bit for Boolean and options + 

9bit for instruction memory address) in proposed method that 

use the rule option. As a condition of implementation of CRC 

generator in filtering module, the bit length of CRC pattern is 

altered according to the number of pattern as shown in Table 

VII. This is because the effectiveness of hash memory 

depends on the hit rate of hash memory and the hit rate is 

affected by the size of addressing bus calculated by the CRC. 

Table VIII shows the performance and area cost of CRC 

generator and index memory. Area cost is evaluated on both 

CRC generator and index memory. The performance is 

evaluated by using efficiency per area cost, and it is 

calculated by using the equation (1). 

We compared five different configurations of hash 

memory designs and the number of CRC generators. Original 

configuration is case sensitive. Any hardware reduction 

techniques are not given. In +insensitive configuration, the 

number of CRC generator and index memories is reduced by 

ignoring the case-sensitive operation in the filtering module. 

In +prefix (5) configuration, the number of CRC generator 

and index memories is reduced by limiting the length of 

pattern up to five characters. In +option configuration, three 

options of Snort patterns are considered and stored in the 

index memory. Filter performance is improved dramatically. 

The performance of proposed methods is 2.0–56 times 

better than the performance of original method as shown in 

Table 7. 

 

VI. CONCLUSION 

In this paper, we described and compared three proposed 

techniques to reduce the hardware cost of string searching 

function in a regular-expression processing. Case-insensitive 

approach contributes to reduce the low area cost of hash 

memory, and it does not degrade the rate of miss filtering 

much. Shortening of hashing pattern length can reduce the 

number of CRC generator and index memory. Use of 

associated options improves filter performance dramatically 

and prohibits the incensement of memory size.  By using 

proposed sophisticated hash memory architecture, it can 

reduce the processing cost and resource cost of processor 

based exact matching. 
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