



Abstract—Regular-expression is widely used in various

network applications, such as a network intrusion detection

system (NIDS). However, existing regular-expression process

does not meet required throughput in core routers because most

of NIDSs have been implemented by software. In particular, a

pattern matching function, a part of regular-expression

processing, requires comparatively longer processing time.

Huge amounts of patterns are used for this pattern matching in

NIDS. Therefore, high-throughput processing modules are

strongly required in order to execute a large number of

complicated regular-expression. In this paper, a simple but

effective hash-based architecture of pattern filtering with

special entries is discussed, and it enables to achieve a large

number of patterns matching.

Index Terms—Network processor, regular-expression,

pattern matching, hash

I. INTRODUCTION

Regular-expression is used in various areas such as

Network Intrusion Detection System (NIDS) and

content-based analysis. For example of NIDS, Snort [1] and

Bro [2] are representative NIDS and they utilize

regular-expression stored in pattern files. However, their

processing throughput is still very narrow and it deteriorates

network service quality. Main reasons of this slow

performance is enormous amounts of patterns used in a

matching process includes complex regular-expressions.

As an enhancement of this content-based analysis, XML

based routing [3]–[5] is studied. This XML-based router uses

the information in a payload of a packet for its routing.

Service-oriented router [6] is a leading edge project that

proposes a special router for enhancing network services and

user experience. XML router and Service-oriented router

require quick update of regular-expression patterns,

especially when it is used in a highly real time service such as

action-history analysis and research of real-time popularity

[6]. To meet the requirements for the high-speed pattern

matching, hardware architecture for processing the enormous

amounts of patterns effectively is needed.

Some works have been conducted to propose the

accelerating methods of regular-expression processing

[7]–[10]. All of them utilize Deterministic Finite Automaton

Manuscript received May 10, 2012; revised June 12, 2012. This work was

supported partially supported by National Institute of Information and

Communications Technology (NICT) and a Grant-in-Aid for Scientific

Research (C) (22500069).

H. Yamaki, Y. Nagatomi, and H. Nishi are with the Graduate School of

Science and Technology, Keio University, Yokohama, Kanagawa, 223-8522,

Japan (e-mail: yamaki@west.sd.keio.ac.jp, yasu@west.sd.keio.ac.jp,

west@sd.keio.ac.jp)

(DFA)-based or Nondeterministic Finite Automaton

(NFA)-based device, which has reconfigurable architecture.

Aho- Corasick method is a fundamental algorithm of these

proposed accelerators. In such DFA/NFA-based systems,

circuits for state transition machine are frequently rewritten

when the patterns of regular-expression are updated. The

DFA/NFA-based processing of regular-expression takes

large processing cost if it is used in a system, which requires

frequent updates of pattern. In this paper, we propose a

mechanism for narrowing down the cost of pattern matching

included in regular-expressions processing. This mechanism

is composed of three different functions effectively. This

mechanism can reduce the area cost because of its simple

structure and enhance the regular-expression performance

and its updating performance.

II. RELATED WORK

Because of the increase in communication traffic over the

Internet, a regular-expression, which depends on total

throughput of NIDS, is becoming more important. To meet

the requirements of the efficient regular-expression

processing, several studies have achieved, especially

proposes of hardware accelerators are key solution to attain

high-throughput regular-expression processing.

Some proposes use NFA-based architecture [8] in order to

achieve parallel processing. Although the NFA-based

hardware can process many patterns at the same time, it

requires frequent reconfiguration of circuits for updating

rules of NIDS and it makes a lot of overhead. Titan IC

System and LSI corp. have manufactured NFA/DFA–based

processor optimized for regular-expression processing [11],

[12].

Meanwhile, Z. Baker has proposed DFA-based

architecture in order to reduce the overhead caused by

frequent update of patterns. The DFA-based hardware can

update pattern files only by updating memory. However,

Baker's DFA-based architecture has a limitation in its

scalability because its next transit state can be set uniquely.

This feature increases the number of states exponentially if it

is used for complex regular-expression processing. Therefore,

hardware architectures which only use such DFA-based

architecture are not suited for processing enormous amount

of patterns including complex regular-expressions.

As another approach, hash-based pattern matching is

proposed. Hash-based pattern matching is appropriate for

processing multiple patterns because hash can reduce the

number of candidate patterns efficiently. Some of these

works utilizes Bloom filter [13]. Bloom filter is a

space-efficient probabilistic data structure and it requires

Effective Hash-Based Filtering Architecture for

High-throughput Regular-Expression Matching

Hayato Yamaki, Yasutsugu Nagatomi, and Hiroaki Nishi

International Journal of Information and Electronics Engineering, Vol. 2, No. 5, September 2012

672DOI: 10.7763/IJIEE.2012.V2.185

many hash functions. There are two methods to prepare

memory for hash. One is multiple access method that uses

only one hash memory and asserts multiple accesses to the

memory. This method costs a lot of processing steps of

memory accesses. The other method uses multiple hash

memory for permitting pipe-line processing. This method

costs the amount of hardware resources. These defects of

Bloom filter are pointed out by G. Papadopoulos [14].

Input String

Output

String

Rule sets

User’s requirement

Software

Hardware

Hash Tables

Exact Matching Module

Exact Matching Module

Filtering Module

Instructions

Result

Scheduler

Exact Matching ModuleFiltering Module

Down StreamUp Stream

CRC gen
Scheduler

RISC Core
Instruction
Memory

Comparator

Pattern
Memory

Index
Memory

Fig. 1. (a) Structure of regular-expression processor; (b) Hardware architecture

Additionally, perfect hashing function is studied as one of

the approaches to hash-based pattern matching [15]. Perfect

hash function enables to distribute hash collisions, and

ideally it can prevent hash collisions. Although perfect hash

function is an efficient method to narrow down the number of

candidates, the update cost is higher than other methods. This

method cannot be used in the system which requires

frequently reconfiguration for rebuilding hash tree. As an

enhancement of perfect hashing function, HashMem, a

hash-based architecture, is proposed [14]. This architecture

costs a lot of hardware because hash table should be prepared

for every length of pattern. Another HashMem is also

proposed, which reduces hardware cost by dividing long

pattern into short one. However, it needs other circuits for

aggregating divided hash values and for matching check and

could not solve the problem of hardware cost enough.

Furthermore, commercial processor for efficient

processing of character strings is manufactured for personal

computer. Intel Core i7 has instruction set called as String &

Text New Instructions (STTNI) as an extension of SSE

(Streaming SIMD Extensions) 4.2. The instruction set is for

accelerating analysis of XML and it enables efficient

processing of regular-expressions [16]. However, the

processor is not suited for processing the enormous amount

of patterns because it does not have any special hardware for

high-speed processing of patterns.

III. ARCHITECTURE OF PROPOSED PRE-FILTERING HASH

MODULE FOR REGULAR-EXPRESSION PROCESSOR

Our idea is to design special hash-table according to a

target application. To achieve effective distribution of

hash-memory accesses, preprocess of network traffic and

statistical analysis were conducted. As first, proposed

architecture of regular-expression processor is shown in Fig.

1(a). User-defined rule sets, described by using a

regular-expression, are compiled in software layer. The

software outputs entries of Hash tables and the instructions

for the exact matching modules. The hash table selects one

instruction from instructions memory. Scheduler, filtering

module and exact matching modules are implemented by

using hardware, because they require high-throughput

processing. To accomplish the high-throughput processing,

SoC (System on Chip) architecture is indispensable for a

network processor. Fig. 1(b) shows the hardware architecture

of the regular-expression processor from the viewpoint of its

processing order. Exact matching modules are a micro

controller based string matching hardware. Scheduler is

resource management hardware of the exact matching

modules. The following paragraph explains the filtering

module.

The filtering module determines potential matches

between lexical string of packet stream and target string by

using a hash table. This module consists of CRC generator

and index memory, as shown in Figure 1(b). CRC generator

makes a hash of input string. The hash value is used as an

address of index memory. Each entry of the index memory

has two types of data. One is a Boolean value that implies that

additional process of exact match is required. The other is an

address of instruction memory that points the start address of

dedicated exact-match-handling program stored in the exact

matching module. When the Boolean value indicates that the

additional exact match is required, the start address of

instruction memory is sent to the exact matching module.

These CRC generators and index memory become big

because the set of CRC generator and index memory is

separately implemented according to the pattern length of

target string. One CRC generator and index memory can

handle only one length of string. For reducing the hardware

cost of this hash memory, three different methods are

proposed as following.

A. Case-Insensitive Approach

When supporting both case sensitive and case insensitive

pattern matching, two different CRC generator and hash

memory are required. However, 81% of the snort pattern sets

specifies the case-insensitive switch as a contents option. For

this reason, enough filtering performance can be achieved

only when case-insensitive function is implemented in

filtering module. In addition, accuracy of detection is not

eliminated because the case-sensitive matching can be

followed after the case-insensitive matching.

International Journal of Information and Electronics Engineering, Vol. 2, No. 5, September 2012

673

B. Shortening the length of Hashing

Some of ASCII character patterns in Snort exceed over

100 characters. If CRC module in filtering module is

implemented individually as different hash modules of 1 to

100 characters, the large size of CRC modules and Index

memory may cause a problem when implemented. The main

purpose of the filtering module is to reduce the processing

cost of following exact matching module, and it is enough to

find a possibility of potential match in the filtering module. In

this meaning, full-length pattern matching is not required

because to check first limited characters is enough to find the

possibility of a potential match. As shown in Fig. 2, matching

pattern that has longer pattern length has smaller number of

matches. This proofs that long matching pattern is not

significant in reducing processing cost of the exact matching

module. For this reason, the filtering module can distinguish

the potential match by using a hash function that only checks

first several characters.

Fig. 2. Relation between pattern length and the number of match patterns

C. Use of Associated Options

Snort allows using several options in its patterns, for

example, port number, IP address, and search range of

pattern matching, and other parameters derived from the

Internet traffic. The filtering module can eliminate the

number of matches if the module effectively utilizes these

options. Since the number of kicks of processes at an exact

matching module can decrease, the number of the exact

matching modules can be reduced. To use these options, the

entries of index memory should be extended. The

architecture of the improved filtering module is shown in Fig.

3. The difference between the original filtering module and

the improved filtering module is a behavior of a header

analyzer. It extracts information of a destination port,

destination IP, etc. In particular, the location of processing

should be counted in order to use the search range option that

indicates the end of the matching process. By comparing the

information including the counter, port number and IP

address with the entry information of the corresponding

index memory, advanced filtering process on the exact

matching module can be achieved according to the

previously calculated bit entries. Proposed filtering module

also enables effective resource distribution of the exact

matching module at the scheduler.

This sophisticated hash memory based filtering module

can eliminate the number of processing modules of exact

matching. If the hash memory can reduce the cost of

processing on the exact matching module up to 80%, the

required number of processing module becomes 20% of

originally required number. Though the area cost of this hash

memory becomes large when the hash table has all the

information of the counter, port number, IP address, and

other information included in Snort option, the method to

reduce the hash table is shown next.

Filtering Module

CRC gen
Scheduler

Index
Memory

Verifier

Header
Analyzer
Counter

Fig. 3. Improved filtering module block diagram

D. Compression of Managing Options in Hash Memory

Reduction of the size of hash memory, namely the

selection of effective set of option and the reduction of

managing size of the option, are discussed by using

snortrules-snapshot-2.8.

1) Selection of Snort options

In this evaluation, general ASCII code based on 4,881

significant snort patterns without binary search were selected.

These pattern sets contain the option of destination port

number and IP address. The percentage of a pattern sets that

specify destination port was 81%. The percentage of a pattern

sets that specify destination address was 51%. These two

options were the most dominant options in the pattern sets. In

addition, the search range option is also useful because it can

terminate the matching process in the middle of processing.

We select these three options as the most dominant option in

the snort rule sets.

2) Compression of bit-length

Even if the filtering module selects three options to

manage in a hash memory, it still requires large memory size.

32bits for IP address, 16bits for port number, and 16bits for

length are needed. Totally, additional 64bits entry is required

and it enlarges the size of hash memory drastically. We

analyzed the most effective compression of the information

by analyzing each option of Snort.

To reduce the bit length of port number option, the port

number of Snort option was analyzed. The analysis result in

Table I indicates that the information of destination port

number can be compressed to 2-bit information which

expresses four groups of port number, such as port 80, other

port, any port and false. The false group means mismatch and

such mismatched information is excluded from the target

pattern. Though it is desirable to divide the probability into

33% for each when considering the distribution of hash

memory, port 80 (www) is dominant and this division is

understandable in this situation.

To reduce the bit length of destination IP, the existing

probability of destination IP in Snort pattern was analyzed in

Table II. It is enough to use only one-bit information that

indicates destination address is included in internal network

or in any other network and is almost perfectly divides the

probability into half and half.

Finally, to reduce the bit length of starting point of a search

International Journal of Information and Electronics Engineering, Vol. 2, No. 5, September 2012

674

in a data stream, we analyzed the frequency of usage of the

starting point option in Snort. To eliminate the number of

candidate that kicks the process of the exact matching

module, a pattern with comparatively shorter length should

be filtered. It means small number of starting point should be

remained in this reduction process. This is also shown in Fig.

3 and it proofs that a pattern with shorter length is frequently

accessed. According to this fact, the dominant starting point

in such a sort patterns is shown in Table III. This result

indicates that the bit length of starting point can be

compressed to 2-bit information. The existing probability of

Start from 1st character or start from 2-11th character is small

but is dominant in network traffic as described. Totally, Snort

option can be expressed by using 5-bit information in an

entry of hash table.

TABLE I: DOMINANT DESTINATION PORT NUMBER

Destination Port Ratio

80 57%

Other 24%

Any 19%

TABLE II: DOMINANT DESTINATION IP

Destination IP Ratio

Internal network 51%

Any 49%

TABLE III: DOMINANT STARTING POINT IN SHORT PATTERNS

Starting point of search scope Ratio

Any 50%

Start from 40th character 40%

Start from 1st character 8%

Start from 2-11th character 1%

IV. EVALUATION OF PROCESSING COST

In this section, we evaluate the number of matches in order

to validate the efficiency of the proposed method and confirm

the result of hardware cost reduction. As a packet stream, we

used 500 streams (13MB) captured on the gateway router of

our laboratory. The specifications of destination port number

and destination address of the stream are shown in Table IV

and Table VII.

TABLE IV: SPECIFICATION OF A DESTINATION IP

Destination IP Ratio

Internal network 30%

External network 70%

TABLE V: SPECIFICATION OF A DESTINATION PORT

Destination Port Ratio

80 97%

The other port 3%

A. Case-Insensitive Approach

Result of case-insensitive approach is shown in Fig. 4. In

figure, y-axis means the improving rate of the proposed

method compared of case-insensitive CRC module with the

original method that has both case-sensitive and

case-insensitive CRC module. The rate of improvement is

limited at most about 20%. The overall incensement of the

number of matches is about 1.6%.

Fig. 4. Improvement rate of match frequency

B. Shortening the length of Hashing

The relation between the length of hashing pattern and the

number of process kicks in exact matching module is shown

in Fig. 5. Y-axis denotes the improving rate of the proposed

method compared with the original method in the number of

kicks. If the hashing length is restricted to five characters, the

number of matches will increase about 1.4% of the cases,

which did not limit the hashing length.

Fig. 5. Relation between hashing pattern length and the number of kicks

Fig. 6. Relation between match frequency and combination of options

C. Use of Associated Options

The relation between the number of process kicks in exact

matching module and combination of options is shown in Fig.

6. Y-axis denotes the improving rate of proposed the method

compared with the original method in the number of kicks as

well as Fig. 5. Normal means the case when an option is not

used. Dip specifies a destination IP address. Range specifies

the starting point option of Snort. Dport specifies a

destination port. The number of kicks is improved and it can

be eliminated to the 20% to 4% of original method.

International Journal of Information and Electronics Engineering, Vol. 2, No. 5, September 2012

675

TABLE VI: SELECTION OF BIT WIDTH OF CRC

of patterns 1 2 3-5 6-11 12-23 24-47 48-95
96-

191

192-

383

384-

767

768-

1535

1536-

3071
3072-

Bit widths 4 5 6 7 8 9 10 11 12 13 14 15 16

TABLE VII: IMPLEMENTATION RESULT

Design
Fluctuations in the

number of kicks

CRC generator

[µm2]

Index Memory Size

[kbyte]

Area Cost

[µm2]
Performance

Original 100% 86,373 184 161,216 1

+insensitive 102% 43,187 92 80,609 2.0

+insensitive +prefix (5) 103% 1,128 100 41,804 3.7

+insensitive +option 4% 43,187 129 95,659 42

+insensitive +prefix (5) +option 5% 1,128 140 58,074 56

 

 kicks of# costArea 1 = design original of ePerformanc

design original of ePerformanckicks of# costArea 1 = ePerformanc




 (1)

V. EVALUATION OF HARDWARE COST

This section focuses on the hardware cost of CRC

generator and Index memory. In this evaluation, we designed

the proposed method by using the verilog Hardware

Description Language, and we use Synopsys Design

Compiler 2008.09 as a logic synthesis tool. In our design, we

used the 45-nm process technology by synthesis library

called freePDK [17]. As a pattern length, more than 2-byte

length of pattern is used. In this evaluation, the hardware cost

of CRC generator and index memory in each technique is

compared. The word length of an index memory is set to 10

bits (1bit Boolean + 9bit for the address of instruction) in the

original method that does not use Snort rule option. By

contrast, It becomes 14 bits (5bit for Boolean and options +

9bit for instruction memory address) in proposed method that

use the rule option. As a condition of implementation of CRC

generator in filtering module, the bit length of CRC pattern is

altered according to the number of pattern as shown in Table

VII. This is because the effectiveness of hash memory

depends on the hit rate of hash memory and the hit rate is

affected by the size of addressing bus calculated by the CRC.

Table VIII shows the performance and area cost of CRC

generator and index memory. Area cost is evaluated on both

CRC generator and index memory. The performance is

evaluated by using efficiency per area cost, and it is

calculated by using the equation (1).

We compared five different configurations of hash

memory designs and the number of CRC generators. Original

configuration is case sensitive. Any hardware reduction

techniques are not given. In +insensitive configuration, the

number of CRC generator and index memories is reduced by

ignoring the case-sensitive operation in the filtering module.

In +prefix (5) configuration, the number of CRC generator

and index memories is reduced by limiting the length of

pattern up to five characters. In +option configuration, three

options of Snort patterns are considered and stored in the

index memory. Filter performance is improved dramatically.

The performance of proposed methods is 2.0–56 times

better than the performance of original method as shown in

Table 7.

VI. CONCLUSION

In this paper, we described and compared three proposed

techniques to reduce the hardware cost of string searching

function in a regular-expression processing. Case-insensitive

approach contributes to reduce the low area cost of hash

memory, and it does not degrade the rate of miss filtering

much. Shortening of hashing pattern length can reduce the

number of CRC generator and index memory. Use of

associated options improves filter performance dramatically

and prohibits the incensement of memory size. By using

proposed sophisticated hash memory architecture, it can

reduce the processing cost and resource cost of processor

based exact matching.

REFERENCES

[1] SNORT. [Online]. Available: http://www.snort.org/

[2] BRO. [Online]. Available: http://www.bro-ids.org/

[3] A. C. Snoeren, K. Conley and D. K. Gifford, “Mesh based content

routing using xml,” In Proc. 18th ACM Symposium on Operating

System Principles, pp. 160-173, 2001.

[4] A. Carzaniga, M. J. Rutherford, and A. L. Wolf, “A routing scheme for

content-based networking,” In Proc. 23rd Annu. Joint Conf. Computer

and Communications Societies, pp. 918-928, 2004.

[5] J. Moscola, Y. H. Cho, and J. W. Lockwood, “A reconfigurable

architecture for multi-gigabit speed content-based routing,” In Proc

High-Performance Interconnects (HOTI) 2006, pp. 61-66, 2006.

[6] K. Inoue, D. Akashi, M. Koibuchi, H. Kawashima, and H. Nishi,

“Semantic router using data stream to enrich services,” In Proc.

3rdInternational Conference on Future Internet CFI 2008 Seoul, pp.

20-23, 2008.

[7] Z. Baker, H. J. Jung, and V. Prasanna, “Regular-expression Software

Deceleration for Intrusion Detection Systems,” In Proc. International

Conference on Field-Programmable Logic and its Applications (FPL)

2006, pp. 418-425, 2006.

[8] I. Sourdis, J. Bispo, J. M. Cardoso, and S. Vassiliadis, “Regular

expression matching in reconfigurable Hard-ware,” Journal of Signal

Processing Systems, vol. 51, no. 1, 2007.

[9] B. C. Brodie, D. E. Taylor, and R. K. Cytron, “A scalable architecture

for high-throughput regular-expression pattern matching,” In Proc.

International Symposium on Computer Architecture (ISCA) 2006, pp.

191-202, 2006.

[10] F. Yu, Z. Chen, Y. Diao, T. Lakshman, and R. H. Katz, “Fast and

memory-efficient regular expression matching for deep packet

inspection,” Technical Report UCB/EECS-2006-76, EECS Department,

University of California, Berkeley, 2006.

[11] Regular Expression Processor, titanicsystems [Online]. Available:

http://www.titanicsystems.com/products/item/1/regular-expression-pr

ocessor-rxp/

International Journal of Information and Electronics Engineering, Vol. 2, No. 5, September 2012

676

[12] Tarari Content Processors, [Online]. Available:

http://www.lsi.com/networking_home/networking_products/tarari_co

ntent_processors/index.html

[13] M. Attig, S. Dharmapurikar, and J. Lockwood, “Implementation results

of bloom filters for string matching,” In Proc. IEEE Symposium on

Field-Programmable Custom Computing Machined (FCCM), 2004.

[14] G. Papadopoulos and D. Pnevmatikatos, “Hashing + Memory = Low

Cost, exact pattern matching,” In Proc. International Conference on

Field Progrramable Logic and Applications, pp. 39-44, 2005.

[15] I. Sourdis, D. Pnevmatikatos, S. Wong, and S. Vassiliadis, “A

reconfigurable perfect-hashing scheme for packet inspection,” In Proc.

International Conference on Field Programmable Logic

andApplications, pp. 644-647, 2005

[16] String Text New Instructions, .cs. uml [Online]. Available:

http://www.cs.uml.edu/~bill/cs515/Intel_Nehalem_Processor.pdf

[17] Free PDK, [Online]. Available:

http://www.eda.ncsu.edu/wiki/FreePDK

Hayato Yamaki received his B.E. degrees from Keio

University, Japan, in 2011, respectively. He

researches about cache architecture of network

processor and is interested in hash.

Yasutsugu Nagatomi received his B.E., and M.E.

degrees from Keio University, Japan, in 2009 and

2011, respectively. He researched about network

architecture of router and was interested in hash.

Hiroaki Nishi received his B.E., M.E., and Ph.D.

degrees from Keio University, Japan, in 1994, 1996,

and 1999, respectively. He has been selected as

fellowships from Japan Society for Promotion of

Science from 1996 to 1999. He was a researcher in

Real World Computing Partnership from in 1999 and

researched high performance network for cluster

computers. Since 2002, he was a researcher in the

Central Research Laboratory, Network Platform

Department, Hitachi Ltd., and he led new generation backbone router

project. He was Lecturer and Assistant Professor in Department of System

Design Engineering, Keio University in 2003 and 2006, respectively. Now,

he is Associate Professor of Keio University since 2007 and Visiting

Associate Professor of National Institute of Informatics (NII), Japan since

2010. Prof. Nishi is a member of IEEE, Institute of Electrical Engineers of

Japan, Architectural Institute of Japan, Information Processing Society of

Japan, the Institute of Electronics, Information and Communication

Engineers and the Society of Instrument and Control Engineers. He

received Network System Research Award in 2003 from IEICE, Award for

the outstanding contribution IEEE ICS Advanced Motion Control

Workshop in 2004, Best Paper Award of FANAC FA Robot financial

group in 1007 and 2008, Best Paper Award of IPSJ Ubiquitous Computing

Society in 2010, Best Presentation Award of IPSJ SLDM society in 2010

and Computer System Award of IPSJ in 2011. The main theme of his

current research is in building of the total network system including

development of hardware and software architecture.

Author’s formal

photo

Author’s formal

photo

International Journal of Information and Electronics Engineering, Vol. 2, No. 5, September 2012

677

