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      Abstract—Processors speed have increased in a steady pace 

year over year, storage system performance is still the major 

bottleneck for most computer systems including high 

performance computers. Many attentions have been given to 

optimize the storage system speed using various approaches 

such as caching, intelligent perfecting and scheduling 

techniques, nevertheless, the storage system remains the 

performance bottleneck for most computer systems. Solid State 

Devices (SSD) have lately been used as a cache layer located 

between the system main memory and the magnetic hard drives 

in order to create robust and cost effective hybrid storage 

systems. The reason comes from the growing density of the 

SSDs at lower prices with main advantage of high random read 

efficiency compared to magnetic hard drives. These new devices 

are capable of producing not only exceptional bandwidth, but 

also random I/O performance that is orders of magnitude better 

than that of standard rotating mechanical disks due to the 

absence of moving parts. In this paper, we have conducted an 

extensive empirical and comparative study of an I/O intensive 

workload running on hybrid storage system. We have 

configured an SSD-Aware real system with variable RAM, SSD, 

Working Sets configurations in order to evaluate the 

performance gain achieved by utilizing the SSD device as a 

middle layer between the RAM and the Hard Disk. This 

attractive middle layer has also motivated us to propose and 

simulate new SSD-Aware Hybrid Caching Architecture (HCA) 

that utilizes an SSD as an extended read cache to the main 

memory. We have developed a Hybrid Cache Simulator to 

explore the design space of the hybrid cache using both 

performance and cost metrics and test it for two I/O intensive 

real system workloads. Our simulated architecture along with 

the real system experiments have shown that SSD can 

effectively be used as a cache extension to the main memory to 

minimize the disk hits ratio that would otherwise cause 

substantial delay in workload performance. 

 
Index Terms—Hybrid storage system, multi-level caching, 

data intensive application, solid state devices, SSD-aware page 

replacement policy.  

I. INTRODUCTION 

In recent years, Processor speeds have increased out 

pacing the speed of other computer system components. The 

speed gap between the CPU and the storage devices is 

negatively affecting the overall system performance, this gap 
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is widen year after year as CPUs becoming much more 

sophisticated in their advanced internal design and high clock 

rate. Storage systems dependency on mechanical parts is a 

major bottleneck for the overall computer system 

performance, these devices have extremely low latency 

compared to the processor's speed, the processor has to wait 

for the data to be retrieved from the right location on the 

magnetic disk, this operation requires repositioning the 

reading head of the magnetic device to a new location and 

therefore wasting valuable processor's time. The absence of 

moving parts and substantial drop of the SSD's (Solid State 

Devices) cost has motivated researchers to integrate them 

within the current storage systems in order to minimize the 

latency generated by the magnetic devices. An interesting 

question to ask is how SSDs can be used within the existing 

memory hierarchy and how much performance gain can we 

achieve by integrating the SSD as a new layer within the 

current memory hierarchy to form 3-tiers Hybrid Storage 

System (HSS). In this paper we investigate this question by 

characterizing and evaluating the performance of 3-tier 

memory hierarchy based on Sun's ZFS storage model, we 

show that the SSD storage layer will improve the 

performance of an I/O intensive workloads such as pure 

random read workload and an OnLine Transaction 

Processing (OLTP) workload. We show that the hybrid 

storage model has increased the workloads' IOPS of the 

random read, the OLTP by 17.26x, 2.77x respectively. We 

also show that the file system IOPS have also increased by 

17.08x, 2.76x respectively. The hybrid storage IOPS have 

also increased by 16.42x, 2.99x, respectively. The integration 

of SSD into the hybrid storage has also reduced the latency 

per I/O by 31.77%, 21.57%, respectively. A great gain from 

our experiment is a substantial reduction of the disk hits ratio; 

the two workloads have shown 73.01% and 34.67% drops in 

disk hits ratio respectively. We have also measured the cost 

in terms of dollar amount per single I/O and show that 33% 

cost reduction per single I/O for the two workloads. In order 

to further evaluate the performance of the new 3-tier memory 

hierarchy and have control over the data flow between 

storage layers, we extended our research by proposing a new 

SSD-Aware Hybrid Caching Architecture (HCA) that uses 

SSD as an extended read cache to main memory. 

We have designed an SSD-Aware page replacement policy 

that takes into consideration the characteristics of the SSD. 

We have also developed a hybrid cache simulator to test our 

proposed architecture with two real trace workloads and 

explore the design space using both performance and cost 

metrics for variable architectural configuration. We have 

taken into consideration the continuous drop of the SSD cost 
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and studied its impact on the cost per I/O with variable 

RAM/SSD cost ratios. Our proposed HCA has shown 

significant performance improvement in both disk hits ratio 

reduction and SSD hits ratio along with low response time 

average for the proposed hybrid cache. The proposed 

architecture has also revealed some interesting correlation 

between the RAM/SSD size and cost ratios. 

 

 
Fig. 1. Hybrid cache architecture. 

 

 
Fig. 2. HDD & SSD integration techniques. 

 

II. BACKGROUND 

Even though storage systems have advanced in terms of 

their capacity and internal architecture, they still lag behind 

the speed of current advanced processors. One way to 

overcome this gap is to add more memory to the system in 

order to cache as much data as we can in order to minimize 

the disk accesses, however, even though adding more RAM 

lets systems store larger working sets in memory, the result is 

an expensive system that is highly unreliable due to the 

volatility of the RAM. As a result, many attentions has been 

given to optimize the storage system speed using various 

approaches such as caching, intelligent perfecting, and smart 

scheduling techniques [1]-[4], nevertheless, the storage 

system remains the performance nightmare for most 

computer systems performance analyst and designers. 

Current average seeks time for advanced server drive is 

usually 4 ms and around 8 ms for desktop computers [5], the 

rotation time on the other hand depends primarily on the total 

number of Rounds Per Minutes (RPM) that can be achieved 

by the storage device. The rotation delay also determines the 

maximum throughput that can be achieved by the storage 

device. For example, a high-end magnetic disk with 15K 

RPM can achieve up to 70MB/s [6]. The seek latency and 

maximum bandwidth are impairing the processor's speed and 

therefore reducing the total IOPS achieved by the processor. 

The problem gets even worse when a computer system is 

running I/O intensive applications [7] such as Data Base 

Management System (DBMS), Multimedia, scientific, or any 

other out-of-core application. As these applications process 

large amount of data; they require frequent rapid accesses to 

the storage device in order to run in an acceptable time. 

Application and system designers are always characterizing 

the access patterns of these I/O intensive applications in order 

to minimize the storage device latency. A new hope has 

emerged with the SSD devices as their internal design does 

not contain any moving parts, however, most I/O intensive 

applications developed over the last thirty years are heavily 

optimized around the model of a rotating disk. As a result, 

simply replacing a magnetic disk with SSD devices does not 

yield better performance. These applications have to be 

redesigned in order to leverage the potential of SSD [6], [8]. 

 

III. RELATED WORK 

Recent researches have looked into the potential of 

integrating SSDs with the current storage devices to form a 

hybrid storage model in order to exploit the potential of both 

types of storage devices. Integrating SSDs with the current 

storage systems that uses magnetic disks can be internal or 

external. See Fig. 2. For internal integration, SSD can be 

embedded within the hard disk device to provide extended 

cache for large and fast buffering [9], this approach has been 

implemented by some storage manufactures [10]-[12]. 

External integration however raises many fundamental 

questions to ask, these question are primarily focusing on 

how SSD can be integrated within the current memory 

hierarchy. For example, should the operating system consider 

the SSD as a memory extension [6]-[16] or disk extension?. 

Additionally, if the operating system considers SSD as disk 

extension, should it be used as same level storage extension 

[17], [18] or used as a multi-tier storage hierarchy. 

Furthermore, in case of multi-tier hierarchy, should SSD be 

used as a write-back cache to absorb and hide the 

synchronous write latency generated by some applications 

[19] or should a magnetic disk be used as a write cache to 

hide the SSD poor random write [6], [16] or should SSD be 

used as an external read cache to the storage device. Finally, 

how different designs are going to impact various 

applications with different access patterns. Some researchers 

believe that SSDs have revolutionized the memory hierarchy 

by presenting themselves as a new storage layer that perfectly 

fits between the memory and the storage devices and provide 

substantial improvement in many aspects such as total 

storage system cost, access latency, and power consumption 

[20]. Koltsidas and Viglas [13] has proposed a multi-level 

cache design using SSD, they have established a 3-tier (RAM, 

SSD and HDD) memory hierarchy and investigated the flow 

of pages across the memory hierarchy for different workloads. 

They have defined three invariant schemes namely inclusive, 

exclusive and lazy, their schemes are related to the 

coexistence of pages in the memory hierarchy; they argue 

that page replacement policy is orthogonal to their page 

coexistence schemes; therefore, their schemes may be used 
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with any replacement policy. They also claim that their work 

is analytical study of the techniques engineered in Sun ZFS 

file system and therefore it is complementary to their work 

and can provide a suitable implementation basis. However, 

we observe some key differences between their work and 

ZFS implementation in terms eviction policy. In ZFS 

implementation which is based on Adaptive Replacement 

Cache [21], there is no eviction line between the memory and 

SSD, the ARC policy evicts page prematurely by monitoring 

the tail of the RAM cache in order to avoid SSD write latency. 

We argue here that their first and second schemes are not 

suitable for and I/O intensive application especially if these 

application have a random write access pattern unless it is 

implemented on a write-optimized SSD. In [17], Koltsidas 

and Viglas also proposed using hybrid storage for a database 

where they treat both SSD and magnetic disk at the same 

level of the memory hierarchy meaning that the SSD is not 

used as a cache for the magnetic disk. They have designed a 

set of online algorithm that can be applied at the storage 

controller level to filter out workloads based on their read or 

write intensity, pages with write intensive will be placed on 

magnetic to avoid poor write latency of SSD disk while pages 

with read intensive placed on SSD. Their algorithm is 

adaptive and will change placement based on the workload 

access patterns. In a recent work from Microsoft Research 

[16], Narayanan and Theresa, have found that replacing 

magnetic disks with SSD is not cost effective for any 

workload, interestingly; they have concluded that depending 

on different workloads, SSD capacity per dollar amount has 

to increase by a factor of 3-3000 in order to break even with 

magnetic disk. They have also looked at the cost-benefit 

trade-offs of various SSD and disk hybrid configurations, 

particularly, using SSD as a RAM cache extension and as 

write-back cache to hide the latency of the underlying storage 

device. They have found that only 10% of their workload can 

benefit from using SSD in a hybrid two-tier configurations 

due to the current high capacity per dollar SSD cost. Among 

all hybrid storage models and implementation, Sun has 

proposed a unique hybrid model [22] and implemented it in 

ZFS file system [23], their model is 3-tier memory hierarchy 

of RAM cache (ARC level-1 Cache), SSD(s) level-2 cache 

(L2ARC) and the underlying storage device(s), see Fig. 3. 

The uniqueness of their model is based on an Adaptive 

Replacement Cache [21] which stems from the fact that there 

is not eviction line between the ARC cache and L2ARC 

cache. Instead, ZFS file system will monitor the tail of ARC 

and evict (every 200 ms by default) data blocks prematurely 

and asynchronously from ARC to L2ARC in order to avoid 

poor write latency of SSD device. This innovative idea has a 

price to pay, the L2ARC will need some time to be filled up 

(warm up time), and this time depends on the workload 

access patterns and the ratio between the working set size and 

the ARC size. 

 

IV. PROPOSED HYBRID CACHE ARCHITECTURE 

In order to further evaluate the performance of a new 3-tier 

memory hierarchy and impalement our own page 

replacement policy, we have extended our research by 

proposing a new SSD-Aware Hybrid Caching Architecture 

that uses SSD as an extended read cache to main memory.  A 

key issue in integrating the SSD within the current memory 

hierarchy is to optimize the I/O characteristics of the SSD by 

utilizing its exceptional random read performance while 

minimizing its write/update latency. When using SSD as a 

cache extension to RAM, a system designer will have to 

decide the size of the main memory and the size SSD cache 

taking into account the cost of each component. Another 

consideration is the price/performance trade-off for 

integrating the two caches. 

 
Fig. 3. ZFS implementation. 

 
Fig. 4. HCA implementation. 

 

Furthermore, when given a specific budget, the question to 

ask is what is the right balance that will lead to the best 

performance while maintaining the lowest cost?. Another 

issue the system designer has to decide is the rules that 

govern the migration of data between the two storage layers, 

to elaborate more, a replacement policy must take into 

consideration the physical characteristics of the SSD cache in 

order to utilize its excellent read latency while avoiding 

excessive update that will lead to poor performance. We are 

proposing a hybrid cache architecture that utilizes the 

co-existence of SSD with the memory hierarchy. An abstract 

view of our proposed Hybrid Cache Architecture is shown in 

Fig. 1, it consists of a main memory used as L1 Cache, an 

SSD used as an extended L2 Cache, and magnetic disk (with 

small internal cache) used for persistent storage. An 

additional temporary storage used as a Transient Buffer (TB), 

The transient buffer is a DRAM side buffer that is used to (i) 

store evicted pages from RAM cache in order to avoid 

excessive SSD update, (ii) process and evict pages based on 

their locality to minimize the number of SSD blocks that will 
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hold the evicted pages from transient buffer. In order to 

further reduce the probability of excessive SSD update, our 

architecture adopts the exclusive principle of multi-level 

caching, i.e., a page cannot coexist in the both caches at the 

same time, it can either be in RAM Level-1 (L1) Cache or 

SSD Level-2 (L2) cache. The Architecture also includes a 

hybrid cache directory that keeps tracks of the location of 

each page in the hybrid cache. A detailed page replacement 

algorithm that will utilize the proposed hybrid cache 

architecture is shown below. In our replacement policy 

algorithm, when a page is referenced by an application, it is 

first looked for in L1 Cache, if the page is found, a RAM hits 

occurs and a page is returned to the application. If the page is 

not found, it is looked for in the L2 SSD cache, if found, a 

space needs to be freed (in case L1 Cache is full) in L1 cache 

before moving the page up in the hierarchy, a hybrid cache 

directories is also updated to reflect the most recent locations 

of migrated pages. If the page is not found in either L1 cache 

or L2 cache, the transient buffer is searched as well, the page 

is returned if found, otherwise the page is retrieved from the 

magnetic disk. L1 RAM cache is always checked for free 

space and a page is evicted (based on Least Frequently Used 

LFU Policy) to the transient buffer if space is needed to store 

new page in L1 cache. We varied the transient buffer size 

during our experiments and observed some improvement in 

the extended cache average response time and IOPS. 

Detailed results will follow in subsequent sections. 

 

V. EXPERIMENTAL SETTINGS  

In this section, the experimental settings are explained for 

both real system experimentation as well as the simulation 

based proposed architecture. 

A.  SSD-Aware Real System 

For a real system setup, we will characterize and evaluate 

the performance of the hybrid storage model implemented by 

the Sun's ZFS file system. Our main aim is to investigate the 

impact of using SSD as a RAM cache extension (L2ARC). 

We have used Filebench benchmark tool [24] to generate two 

different workloads namely Random Read and OLTP 

workloads with 10 GB working set for each workload.     We 

have ran each workload twice, a baseline run with standard 

7500 (Round Per Minutes) RPM disk and another run with a 

hybrid storage by using off-the-shelf Lexar 

(LJDTT32GB-000-1001D) 32 GB SSD flash. The whole 

experiments implemented on a Sun Fire X2270 Server with 

Opensolaris (2009.06). Each experiment ran for six hours to 

guarantee enough warm-up time for the SSD cache. It is 

worth indicating that using off-the-shelf SSD was deliberate 

since our aim is to use the SSD as a read level-2 cache 

extension to improve the workloads' read performance and 

therefore not to worry about poor write performance of this 

cheap device. Although our server has 6 GB of RAM, we 

have limited the ARC cache to 2 GB to maintain a 5x ratio 

between the working set size and the ARC cache available to 

the file system which will guarantee ARC cache misses and 

therefore L2ARC hits. The file system record size was set to 

8K bytes for the OLTP workload benchmark to emulate a real 

OLTP applications, the other workload was also ran on 8K 

record size to maintain fair comparison between the two 

workloads. All the performance data was collected using 

commands that capture snapshots from the operating system's 

Kernel. Finally and as an extension to our work, We have 

conducted twenty seven additional experiments by 

configuring the RAM sizes to 2,4,6 GB, SSD size to 4,6,8 GB 

and varying the working sets size to equal 10,15,20 GB. The 

main objective of these additional experiments is to configure 

variable RAM, SSD, Working set combinations and 

monitoring the performance gain achieved by each 

configuration. We have also used Filebench benchmark to 

generate the workloads; again, we have ran each workload 

twice, a baseline and a hybrid storage system by using the 

same off-the-shelf Lexar SSD. The experiments were 

implemented on the same machine. 

B. HCA Simulation Setup 

In simulating our proposed Hybrid Cache Architecture, we 

have developed a simulator to evaluate the performance of 

our architecture and integrated it with the standard Disksim 

simulator [25]. The L2 SSD cache and magnetic disk 

response times were collected from Disksim along with IOPS 

for both devices. On the other hand, the hits ratios for each 

system components were monitored by our simulator. The 

interaction between our simulator and Diskism is in the form 

of reduced trace file. Whenever, an I/O miss occurs in either 

L1 RAM cache or L2 SSD Cache, a new I/O request is added 

to the corresponding trace file, these two reduced size trace 

files are passed over to Disksim and performance metrics is 

gathered and used by our simulator. A detailed view of the 

interaction with Disksim is shown in Fig. 4. Our simulator 

was implemented in standard C language and all performance 

evaluations ran on 131 nodes SUN X2200 M2 X64 cluster 

machine in order to test large number of experiments. A 

variable RAM/SSD size ratios were used to evaluate our 

architecture, we have also used variable RAM/SSD cost ratio 

in order to consider future anticipated reduction in the SSD 

cost. We have varied the Transient Buffer size in order to 

evaluate its impact of our performance metrics. Finally, we 

ran each experiment twice to compare the baseline with the 

hybrid cache configuration for two I/O intensive workloads; 

a financial trace and a Web Server trace obtained from the 

Storage Performance Council [26].  

 

VI. RESULTS FOR REAL SYSTEM EXPERIMENTS  

As we have indicated above, each workload ran for six 

hours in order to allow enough time for the SSD cache to be 

populated. Based on observations from our experiments, we 

have seen that L2ARC cache is populated at different rate for 

each workload, for example, the random read required 4.5 

hours to fully migrate the working set from level-1 ARC 

cache to L2ARC SSD cache, the OLTP workload however, 

required almost the same time to migrate 80% of the working 
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set to the L2ARC SSD cache, the remaining 20% working set 

could not be migrated to the SSD during the remaining 1.5 

hours, we characterize this to the fact that the OLTP 

workload includes updating some data blocks which means 

that the workload is invalidating these dirty blocks and 

constantly dropping them from L2ARC SSD due to the 

workloads behavior. 

A. Performance Metrics  

In our experiments, we have collected snapshot from the 

Kernel's performance data using some system commands that 

reflects real time performance data every 60 seconds. The 

main aim of our empirical study was to evaluate the hybrid 

storage model performance using some critical metrics such 

as, the ARC hits ratio, the L2ARC hits ratio, the disk hits 

ratio, the workload's IOPS, the file system's IOPS, the storage 

system IOPS, the latency per IO, and the dollar amount cost 

per IO. This last metric was calculated by dividing the total 

combined cost of the hard disk and SSD ($250) by the total 

achievable IOPS for all the 360 snapshot intervals. We have 

measured all these metrics in the baseline run and the hybrid 

run and compared the performance gain and the reduction in 

Random Read Workload. 

 

 
Fig. 5. Baseline hits ratio for random read workload. 

 

This workload generate a pure random read on a 10 GB 

working set, it involves heavy random seeks within a single 

large file. Table I shows the improvement of our metrics, we 

clearly see a substantial improvement of IOPS rate by 17.26x 

for the workload , the IOPS for file system and the storage 

system have also improved by 17.08x and 16.42x 

respectively. 

 
Fig. 6. Hybrid storage hits ratio for random read workload. 

  

Fig. 5 shows that the ARC and Disk Hits ratio for the 

baseline storage is stable overtime; we also see that the disk 

hits ratio is more than 75% which is due to the large working 

set and the limited available ARC cache. 

 
Fig. 7. Disk hits ratio reduction for random read workload. 

 

 
Fig. 8. ARC hits ratio for random read workload. 

 
TABLE I: RANDOM READ WORKLOAD 

Experimental Metrics Baseline Hybrid Improvement 

Workload AVG IOPS 138.5 2390.4 17.26X 

File System AVG IOPS 135.22 2309.6 17.08X 

Storage AVG IOPS 105.22 1728.09 16.42 

ARC Hits Ratio (%) 24.34 25.01 1.03X 

L2ARC Hits Ratio (%) N/A 72.34 - 

Disk Hits Ratio (%) 75.66 2.65 < 73.01 % 

AVG Latency Per IO 

(ms) 

0.09 0.04 < 30.77 % 

AVG Cost Per IO ($$) 1.89 0.94 < 33.22 % 

 

TABLE II: OTLP WORKLOAD 
Experimental Metrics Baseline Hybrid Improvement 

Workload AVG IOPS 378.6 1050 2.77X 

File System AVG IOPS 184.3 509.31 2.76X 

Storage AVG IOPS 140.09 418.51 2.99X 

ARC Hits Ratio (%) 53.26 50.29 > 0.94X 

L2ARC Hits Ratio (%) N/A 37.64 - 

Disk Hits Ratio (%) 46.74 12.07 < 34.67 % 

AVG Latency Per IO 

(ms) 

0.80 0.22 < 21.57 % 

AVG Cost Per IO ($$) 1.44 0.71 < 33.02 % 

 

Fig.  6 and Fig. 7 show the different hits ratios when we ran 

this workload on a hybrid model, the disk hits ratio has been 

dropped to only 2.65% which is a significant reduction in 

disk access and substantial performance gain for both the 

workload and the file system. Fig. 6 also shows how SSD hits 

ratio is improving over time as data migrates and therefore 

retrieved from SSD. Fig. 5 and Fig. 8 show that the ARC hits 

ratio is almost the same for both the baseline and the hybrid 

storage, we believe that the ratio between the working set size 

and the ARC size the crucial factor that determine the ARC 
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hits ratio regardless of the absence or the presence of SSD 

L2ARC cache.  Fig. 9 shows clear speed up of the file system 

IOPS jumping from 135 to 2309 IOPS as data block being 

migrated to L2ARC cache. Similar gain is shown in Fig. 10 

for the hybrid storage reaching 1728 average IOPS. Fig. 11 

also proves that latency per single IO is being reduced over 

time which is also applicable to the dollar mount cost per 

single IO shown in Fig. 12. Fig. 13 is interestingly showing 

the source of retrieving data overtime; it shows that as data 

blocks being migrated to L2ARC cache, the storage system 

will retrieves data blocks from SSD rather than hard disk 

storage which means higher IOPS rate. 

 
Fig. 9. File system IOPS for random read workload. 

 

 
Fig. 10. Storage system IOPS for random read workload. 

 

 
Fig. 11. Latency per I/O for random read workload. 

 

B. OLTP Workload   

This workload emulate the I/O access patterns of Oracle 

11g database, it read from 9 files with 1 GB each plus an 

additional 1 GB used to mimic a database log file. Table  II 

summarizes the result of running this workload on the 

baseline and the hybrid storage. We notice that the IOPS 

performance gain for the workload, file system and storage 

system is almost 3X. We attribute this relatively low 

improvement to the fact that the workload is not only 

performing IOs, it generates fake CPU cycles, deliberate I/O 

wait and writes logging information to emulate real Database 

Management System. These additional overheads will not 

fully utilize the hybrid storage model like the pure random 

read. Nevertheless, a 3X improvement for a ($55) amount is 

an interesting gain. 

 
Fig. 12. Cost per I/O for random read workload. 

 

 
Fig. 13. I/O Source for random read workload. 

 

 
Fig. 14. Baseline hits ratio OLTP workload. 

 

 
Fig. 15. Hybrid storage hits ratio for OLTP workload. 
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Fig. 16. Disk hits ratio reduction for OLTP workload. 

 

Fig. 14 shows that the baseline ARC and Disk hits ratio are 

consistent over time. The ARC Hits ratio of this workload 

(53.26%) is much more than the previous workload (24.34%), 

we believe that the high ARC hits ratio for the OLTP 

workload compared to the random read workload is caused 

by less data being placed on ARC by the OLTP workload due 

to its I/O access pattern. Additionally, when we move to the 

hybrid storage, the L2ARC picks more that 37% of the hits 

leaving only 12% as disk hits compared to 46% disk hits for 

the baseline storage. Fig. 15 and Fig. 16 clearly shows 

significant reduction of disk hits ratio over time dropping 

from more than 90% to less that 10% at the end of the 

benchmark. Fig. 15 also shows how data migrates to SSD 

over time and therefore improving the SSD hits ratio. Again, 

Fig. 17 shows that the ARC hits ratio is almost the same for 

both the baseline and the hybrid storage , we also believe that 

the ratio between the working set size and the ARC size the 

factor that determine the ARC hits ratio regardless of the 

absence or the presence of SSD L2ARC cache. Fig. 18 and 

Fig. 19 show the IOPS improvement for both file system and 

hybrid storage as data block migrated to SSD device over 

time. The latency and dollar amount per IO have also been 

improved as shown in Fig. 20 and Fig.  21. Finally, Fig. 22 is 

consistent with the fact that data block are retrieved from 

L2ARC as time progresses which leads to substantial 

improvement for the file system and the workload IOPS. 

C. Results from Extended Experimental Work  

Variable RAM, SSD and Working sets configurations 

revealed much more interesting results. We have conducted 

an additional twenty seven experiments with different 

configurations and gathered the results shown in Tables 3 to 

8. These tables show the result of three metrics for the same 

workloads, however, different working set sizes are used in 

these workloads. It can be seen by examining the columns of 

Table III and Table IV that the disk hit ratio is decreasing 

with the increase of the SSD cache size for both workloads. 

These results are expected since the SSD is being used to 

retrieve data which means less access to the hard disk and 

therefore more achieved IOPS because of the faster SSD 

devices. Table III and Table IV show the SSD and disk hit 

ratio for the random read workload with different variation of 

SSDs and working sets sizes while restricting the RAM cache. 

These two tables show that the disk hit ratio is proportional to 

the working set size in a fixed SSD cache size. Additionally, 

the SSD hit ratio is inversely proportional to the working set 

size in a fixed SSD cache size since the SSD cache hits are 

less likely with an increasing working set size. However, the 

SSD hit ratio is increasing with an increasing size of the SSD 

cache as more data are migrated to the larger SSD cache. 

Table 6 also shows that the random read IOPS is inversely 

proportional to the working set size in a variable RAM and a 

fixed SSD cache sizes. This observation is expected since the 

achieved IOPS are determined by the sizes of the RAM and 

SSD caches. Additionally, the IOPS are proportional to SSD 

cache size because more data is successfully retrieved from 

these fast devices. Furthermore, the IOPS is somewhat 

proportional to the RAM cache size in a fixed SSD and 

working set sizes. A spike in the 8 GB SSD Cache size is 

attributed to more data being accessed from a larger SSD 

cache over longer time compared to smaller SSD caches. 

Table 6 and Table 7 respectively show the disk and SSD hit 

ratios for the OLTP workload with different variation of SSD 

and working sets sizes while restricting the RAM cache. 
 

 
Fig. 17. ARC hits ratio for OLTP workload. 

 

 
Fig. 18. File system IOPS for OLTP workload. 

 

 
Fig. 19. Storage system IOPS for OLTP. 
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Fig. 20. Latency per I/O for OLTP workload. 

 

 
Fig. 21. Per I/O for random OLTP workload. 

 

 
Fig. 22. I/O source for OLTP workload. 

 

This workload might update data blocks in the SSD cache 

and therefore invalidate and evict them to the Disk. The 

tables show that the disk hit ratio is proportional to the 

working set size in a fixed SSD cache size since more disk 

hits are expected with larger working sets. Additionally, the 

disk hit ratio is inversely proportional to an increasing SSD 

cache size as more data are retrieved faster from the SSD 

rather than the disk. The disk hit ratio also dominates over the 

RAM and SSD hit ratio especially for larger working set sizes 

as an increasing number of data blocks are evicted and 

therefore retrieved from the disk due to data blocks 

invalidation. Furthermore, the SSD hit ratio is inversely 

proportional to the working set size in a fixed SSD cache size 

while the SSD hit ratio is proportional to an increasing SSD 

Cache size as expected. Finally, Table 8 shows that the IOPS 

for the OLTP workload is inversely proportional to the 

working set size in a variable RAM and a fixed SSD. 

 
TABLE III: DISK HITS RATIO FOR RANDOM READ WORKLOAD 

 
 

TABLE IV: SSD HITS RATIO FOR RANDOM READ WORKLOAD  

 
 

TABLE V: IOPS FOR RANDOM READ WORKLOAD 

 
 

TABLE VI: DISK HITS RATIO FOR OLTP WORKLOAD  

 
 

TABLE VII: SSD HITS RATIO OLTP WORKLOAD 

 
 

TABLE VIII: IOPS FOR OLTP WORKLOAD AND VARIABLE RAM, SSD 

 

 

VII. HYBRID CACHE ARCHITECTURE SIMULATION METRICS 

& RESULTS  

A. Performance Metrics  

We have identified some specific performance metrics in 

order to evaluate our proposed hybrid cache architecture, 

some of these performance metrics relate to the hits ratio of 

various components of the memory hierarchy while others 

relate to the cost per I/O and cost reduction which is one of 

the primarily advantage of using SSD as an extended L2 

Cache. The RAM Hits Ratio (RHR), SSD Hits Ratio (SHR), 

Disk Hits Ratio (DHR), Disk Response Time Average (RTA), 

and I/O Per Seconds (IOPS) are the main metrics measured. 

These three metrics are relative to the three memory 

hierarchy components and are calculated by dividing the total 
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component's hits by the total number of I/Os processed by the 

simulator. We have also identified other performance 

evaluation metrics that are needed to evaluate our hybrid 

architecture such as Extended Cache Response Time 

Average (XCRTA), Hybrid Cache Response Time Average 

(HCRTA), Baseline Disk Response Time Average (BDRTA) 

and Hybrid Cache Disk Response Time Average (HCDRTA), 

the Extended Cache IOPS (XCIOPS). The Cost Per I/O and 

Cost Reduction Ratio are measured by each experiments in 

order to observe the impact of each component of the 

memory hierarchy. The following equation (1, 2, 3, 4 and 5) 

are used to calculate these metrics. 

 

XCRTA = SSD RTA _ SHR                                                           (1) 

HCRTA = RHR _ (DRAM Latency) + SHR _ XCRTA  (2)                                                     

XCIOPS = SSD IOPS _ SHR             (3)                                                                                                             

  BDRTA = Baseline DHR _ Disk RTA)         (4)                                                                                             

HCDRTA = Hybrid DHR _ Disk (RTA)        (5)   

                                                                                          

We believe that the hits ratio of each component of the 

memory hierarchy is a crucial factor in measuring these 

performance metrics as they indicate the contribution of each 

component in the system. The results in the next section 

substantiate the impact of the hits ratios on each metrics. 

B. Hybrid Cache Architecture Results   

Two I/O intensive real trace workloads have been used to 

evaluate our hybrid cache architecture. Fig. 23 and Fig. 24 

show the hits ratios for the two workloads with a transient 

buffer size fixed to (64K). They show how RHR, DHR for 

baseline and RHR, SHR and DHR for the hybrid cache are 

varying with variable RAM/SSD size ratios. Fig. 26 clearly 

shows that the disk hits ratio is decreasing for various 

RAM/SSD size ratio as evicted pages are migrating from L1 

RAM cache to L2 SSD cache. Furthermore, it shows that the 

RAM hits ratio has also increased slightly because we count 

the page hit in the transient buffer as a RAM hit since they 

both use the same media. 

 
Fig. 23. Financial trace hits ratio for baseline & hca. 

The figure also shows that the SSD hits ratio is increasing 

over time as it is being filled by excessive pages from L1 

Cache. It is also observable from the figure that the RAM hits 

ratio is increasing as the size of the RAM grows and exceeds 

the size of the SSD cache, this increase is expected since 

more pages are found and retrieved from L1 RAM Cache. Fig. 

27 shows better SSD L2 hits ratio since the Web Server trace 

is predominately read I/O request and less update is required 

on the SSD cache. Fig. 25 and Fig. 26 show the hybrid cache 

response time average (HCRTA) for both Financial and Web 

Server Traces, it is shown from Fig. 25 that the HCRTA is 

fluctuating when the L1 RAM cache size is relatively small 

and more I/O requests are being satisfied from L2 cache 

which has unstable response time average due to the nature of 

the I/O trace and impact of the SSD updates on the 

performance. The figure interestingly shows that the transient 

buffer has improved the HCRTA by absorbing some I/O 

requests as we have mentioned before. Fig. 26 Shows stable 

HCRTA for the Web Server Trace since it is primarily a read 

trace and therefore does not generate more SSD update to 

negatively impact the performance of the L2 Cache. The 

transient buffer has almost no impact in this trace as the 

majority of I/O request are reads. 
 

 
Fig. 24. Web trace hits ratio for baseline & hca. 

 
Fig. 25. HCRTA for financial trace. 

 

 
Fig. 26. HCRTA for web trace. 

 

Fig. 27 and (Fig. 28) show that extended cache IOPS 
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achieved by the L2 Cache for variable transient buffer sizes, 

they clearly see that larger transient buffer size has decreased 

the IOPS achieved by the cache, we believe that the time 

needed to process the content of the transient buffer impacted 

the total achieved IOPS. We also observed that the financial 

trace IOPS for variable transient buffer size are almost the 

same when using larger RAM cache, we also believe that 

larger RAM cache size will always lead to less I/O on the L2 

cache and therefore less extended cache IOPS. It is also 

observable that the IOPS for the Web Server trace (14000 

IOPS) is much higher that the Financial trace (3000 IOPS), 

again, the nature of the Web Server trace as being majority of 

read requests has perfectly utilized the L2 Cache and 

produced the best performance of the cache. 

 

 
Fig. 27. XCIOPS for financial trace. 

 

 
Fig. 28. XCIOPS for web trace. 

VIII. CONCLUSION AND FUTURE WORK   

Our work in this paper is based on Sun 3-tier Hybrid 

storage model; we have conducted an empirical and 

comparative study to investigate the behavior of the model 

when running various I/O intensive workloads along with 

variable RAM, SSD configurations. Our objective was to 

monitor and measure the hits ratio of L1 cache,  L2 cache  and 

the disk. We have measured other performance metrics such 

as latency and dollar cost per IO. Our experiments have 

shown the performance of this hybrid storage model is 

sensitive to the workload I/O access patterns. Our work 

shows that off-the-shelf cheap SSD can lead to substantial 

performance gain for some workloads and decent gain for 

others. 

We have also proposed an SSD-Aware Hybrid Caching 

Architecture (HCA) and a replacement policy that uses SSD 

as an extended read cache to main memory. We have 

developed a simulator to evaluate our proposed architecture 

with two I/O intensive workloads. We have also conducted a 

cost analysis in order to evaluate the cost reduction for both 

real system experiments and simulated architecture. Our 

work in both real system and simulated architecture has 

shown that SSD can effectively be used as an extended cache 

only when an efficient SSD-Aware replacement policy is 

used to migrate pages between the cache levels. We intend to 

continue this work by following three major enhancements. 

First, We will use the SSD as an extended cache to the 

magnetic disk in order to further minimize the disk hits ratio, 

second, we will enhance our SSD-Aware algorithm by 

exploiting the locality among pages which we believe will 

lead to better RAM and SSD hits ratio and better utilization 

of the hybrid cache architecture. Third, we are also interested 

in optimizing this hybrid storage model to find out the right 

balance between different components within the memory 

hierarchy in order to reach the best I/O performance given a 

specific budget. 

REFERENCES 

[1] A. Amer and D. D. L. Noah, “Low-cost file access prediction through 

pairs,” in Proceedings of 20th International Performance, Computing 

and Communications Conference, 2001. 

[2] T. M. Kroeger and D. D. Long, “The case for e_cient file access pattern 

modeling,” in Proceedings of the 7thWorkshop on Hot Topics in 

Operating Systems, 1999. 

[3] X. Ding, S. Jiang, F. Chen, K. Davis, and X. Zhang, “Exploiting disk 

layout and access history to enhance i/o prefetch,”  in USENIX Annual 

Technical Conference, pp. 261–274, 2007. 

[4] J. Gri and R. Appleton, “Reducing file system latency Using a 

predictive approach,” in USENIX Summer Technical Conference, pp. 

197–207, 1994. 

[5] S. W. D. Bruce, and J. Ng, “Memory Systems, Cache, DRAM, Disk, 1st 

Edition,” Morgan Kaufman Press, 2008. 

[6] A. L. Holloway, “Adapting database storage for a new hardware,” Ph.D. 

thesis, University of Wisconsin-Madison, 2009. 

[7] J. T. Poole, Preliminary survey of i/o intensive applications, Tech. rep., 

Caltech Concurrent Supercomputing Facilities, [Online]. Available: 

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.9241 

[8] R. S. M. A. R. J. A. Ailamaki, “valuating and repairing write 

performance on flash devices," in: Fifth International Workshop on 

Data Management on New Hardware, pp. 9–14, 2009. 

[9] E. N. S. Min, “Current trends in flash memory technology,” in: Fifth 

International Workshop on Data Management on New Hardware, pp. 

9–14, 2009. 

[10] Embedded ssd in HDD, Ever wonder what happens when a Hard Drive 

goes bad? REALLY bad 

[Online].Available:http://www.samsung.com/global/business/semicon

ductor/support/ brochures/downloads/hdd/hdd_datasheet_200708.pdf 

[11] Fusion drive, fusionio [Online]. Available: http://www.fusionio.com. 

[12] Windows hardware engineering conference, Samsung printer 

convention  [Online]. Available: 

http://download.microsoft.com/download/9/8/f/ 

98f3fe47-dfc3-4e74-92a3-088782200fe7/TWST05002_WinHEC05.p

pt. 

[13] I. Koltsidas and S. D. Viglas, “The case for ash-aware multi-level 

caching.” Tech. rep, University of Edinburgh, EDI-INF-RR-1939. 

[Online]. Available: 

http://homepages.inf.ed.ac.uk/s0679010/mfcache-TR.pdf. 

[14] T. Kgil, D. Roberts, and T. Mudge, “Improving nand flash based disk 

caches,” in 35th Annual International Symposium on Computer 

Architecture (ISCA), pp. 327–338, 2008. 

[15] T. Kgil and T. Mudge, “Flashcache: a nand flash memory. File cache 

for low power web servers,” in International Conference on compilers, 

Architecture and Synthesis for Embedded Systems, pp. 103–112, 2006. 

[16] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and A. Rowstron, 

Migrating enterprise storage to ssds: Analysis of tradeo_s, Tech. rep., 

International Journal of Information and Electronics Engineering, Vol. 2, No. 5, September 2012

739

http://ebookfreetoday.com/view-pdf.php?bt=Samsung-printer-convention&lj=http://www.barcode-shop.dk/media/docs/samsung-bixolon-srp-350plus-presentation.ppt
http://ebookfreetoday.com/view-pdf.php?bt=Samsung-printer-convention&lj=http://www.barcode-shop.dk/media/docs/samsung-bixolon-srp-350plus-presentation.ppt


  

Microsoft Research, IP Going Mannering [Online]. Available: 

http://research.microsoft.com/apps/pubs/?id=78895. 

[17] S. V. I.  Koltsidas, “Flashing up the storage layer,” in Proceedings of 

the VLDB Endowment, pp. 514–525, 2008. 

[18] A. G. B. U. Y. Kim, “Mix-store, an enterprise-scale storage system 

combining solid-state and hard disk drives,” Tech. rep., Computer 

Systems Laboratory, Penn. State University, Technical Report 

CSE-08-017, MixedStore: An Enterprise-scale Storage System 

Combining, Solid-state and Hard Disk Drives [Online]. Available: 

http://csl.cse.psu.edu/publications/mixedstore_tr.pdf  

[19] T. Bisson and S. A. Brandt, “Reducing hybrid disk write latency with 

flash-backed i/o requests,” in Proceedings of the 2007 15th 

International Symposium on Modeling, Analysis, and Simulation of 

Computer and Telecommunication Systems, pp. 402–409, 2007. 

[20] G. Graefe, “The five-minute rule twenty years later, and how flash 

memory changes the rules, in Proceedings of the 3rd international 

workshop on Data management on new hardware, 2007. 

[21] D. S. M. N. Megiddo, “Arc: A self-tuning, low overhead replacement 

cache,” in Proceedings of the 2nd USENIX Conference on File and 

Storage Technologies, pp. 115–130, 2003. 

[22] A. Leventhal, “Flash storage today,” ACM Queue, vol. 6, no. 4, pp. 

24–30, 2008. 

[23] Zfs file system, WiKipedia [Online]. Available: 

http://en.wikipedia.org/wiki/ZFS. 

[24] Filebench micro benchmark, SiWiKi [Online]. Available: 

http://www.solarisinternals.com/wiki/index.php/FileBench 

[25] Disksim storage simulator, The DiskSim Simulation Environment 

[Online]. Available: http://www.pdl.cmu.edu/DiskSim 

[26] Storage Performance Council. [Online]. Available: 

http://www.storageperformance.org. 

 

 

Abdullah Aldahlawi is a PhD candidate at The george 

Washington University, Washington DC, USA. He is a 

member of the High Performance Computing LAB 

(HPCL) at GWU. His research intrest are HPC, 

Information Retrieval, Data Mining, and SSD-Aware 

Multi-Level Caching. 

 

 

Esam El-Araby received his M.Sc. and Ph.D. degrees in 

Computer Engineering from the George Washington 

University (GWU), USA, in 2005, and 2010 respectively. Dr. 

El-Araby joined the Catholic University of America (CUA) as 

an Assistant Professor in the Department of Electrical 

Engineering and Computer Science in 2010. He is the founder 

and director of the Heterogeneous and Biologically-inspired 

Architectures (HEBA) laboratory at CUA. 

 

 

 

Suboh A. Suboh received his PhD degrees in 

Computer Engineering from the George Washington 

University, USA, in 2010. During his study, he was 

instructor for computer organization, 

microprocessor-based design classes. He is currently a 

research affiliate at the High Performance Computing 

Laboratory (HPCL) at the George Washington 

University. 

 

 

Tarek El-Ghazawi received the PhD degree in 

electrical and computer engineering from New 

Mexico State University in 1988.  He is a professor 

in the Department of Electrical and Computer 

Engineering at the George Washington University 

(GWU), where he also directs the 

High-Performance Computing Laboratory (HPCL). 

He is a co-founder of the NSF Center for 

High-Performance Reconfigurable Computing 

(CHREC), and the founding director of IMPACT: the Institute for 

Massively Parallel Applications and Computing Technologies. He is a 

fellow of the IEEE 

 

.  

 

International Journal of Information and Electronics Engineering, Vol. 2, No. 5, September 2012

740


