



 Abstract—Processors speed have increased in a steady pace

year over year, storage system performance is still the major

bottleneck for most computer systems including high

performance computers. Many attentions have been given to

optimize the storage system speed using various approaches

such as caching, intelligent perfecting and scheduling

techniques, nevertheless, the storage system remains the

performance bottleneck for most computer systems. Solid State

Devices (SSD) have lately been used as a cache layer located

between the system main memory and the magnetic hard drives

in order to create robust and cost effective hybrid storage

systems. The reason comes from the growing density of the

SSDs at lower prices with main advantage of high random read

efficiency compared to magnetic hard drives. These new devices

are capable of producing not only exceptional bandwidth, but

also random I/O performance that is orders of magnitude better

than that of standard rotating mechanical disks due to the

absence of moving parts. In this paper, we have conducted an

extensive empirical and comparative study of an I/O intensive

workload running on hybrid storage system. We have

configured an SSD-Aware real system with variable RAM, SSD,

Working Sets configurations in order to evaluate the

performance gain achieved by utilizing the SSD device as a

middle layer between the RAM and the Hard Disk. This

attractive middle layer has also motivated us to propose and

simulate new SSD-Aware Hybrid Caching Architecture (HCA)

that utilizes an SSD as an extended read cache to the main

memory. We have developed a Hybrid Cache Simulator to

explore the design space of the hybrid cache using both

performance and cost metrics and test it for two I/O intensive

real system workloads. Our simulated architecture along with

the real system experiments have shown that SSD can

effectively be used as a cache extension to the main memory to

minimize the disk hits ratio that would otherwise cause

substantial delay in workload performance.

Index Terms—Hybrid storage system, multi-level caching,

data intensive application, solid state devices, SSD-aware page

replacement policy.

I. INTRODUCTION

In recent years, Processor speeds have increased out

pacing the speed of other computer system components. The

speed gap between the CPU and the storage devices is

negatively affecting the overall system performance, this gap

Manuscript received May 10, 2012; revised June 27, 2012. This work was

supported in part by the High Performance Computing Lab (HPCL), The

George Washington University. Washington DC, USA

A. Aldahlawi is a PhD candidate at Electrical and Computer Engineering

Department, The George Washington University Washington DC, 20037,

USA (e-mail: dahlawi@gwu.edu).

E. Al-Araby and T. El-Ghazawi, and S. Suboh are with the Department of

Electrical Engineering at The Catholic University of America, Washington,

DC 20034 USA (e-mail:aly@cua.edu, suboh@ gwu.edu, tarek@gwu.edu).

is widen year after year as CPUs becoming much more

sophisticated in their advanced internal design and high clock

rate. Storage systems dependency on mechanical parts is a

major bottleneck for the overall computer system

performance, these devices have extremely low latency

compared to the processor's speed, the processor has to wait

for the data to be retrieved from the right location on the

magnetic disk, this operation requires repositioning the

reading head of the magnetic device to a new location and

therefore wasting valuable processor's time. The absence of

moving parts and substantial drop of the SSD's (Solid State

Devices) cost has motivated researchers to integrate them

within the current storage systems in order to minimize the

latency generated by the magnetic devices. An interesting

question to ask is how SSDs can be used within the existing

memory hierarchy and how much performance gain can we

achieve by integrating the SSD as a new layer within the

current memory hierarchy to form 3-tiers Hybrid Storage

System (HSS). In this paper we investigate this question by

characterizing and evaluating the performance of 3-tier

memory hierarchy based on Sun's ZFS storage model, we

show that the SSD storage layer will improve the

performance of an I/O intensive workloads such as pure

random read workload and an OnLine Transaction

Processing (OLTP) workload. We show that the hybrid

storage model has increased the workloads' IOPS of the

random read, the OLTP by 17.26x, 2.77x respectively. We

also show that the file system IOPS have also increased by

17.08x, 2.76x respectively. The hybrid storage IOPS have

also increased by 16.42x, 2.99x, respectively. The integration

of SSD into the hybrid storage has also reduced the latency

per I/O by 31.77%, 21.57%, respectively. A great gain from

our experiment is a substantial reduction of the disk hits ratio;

the two workloads have shown 73.01% and 34.67% drops in

disk hits ratio respectively. We have also measured the cost

in terms of dollar amount per single I/O and show that 33%

cost reduction per single I/O for the two workloads. In order

to further evaluate the performance of the new 3-tier memory

hierarchy and have control over the data flow between

storage layers, we extended our research by proposing a new

SSD-Aware Hybrid Caching Architecture (HCA) that uses

SSD as an extended read cache to main memory.

We have designed an SSD-Aware page replacement policy

that takes into consideration the characteristics of the SSD.

We have also developed a hybrid cache simulator to test our

proposed architecture with two real trace workloads and

explore the design space using both performance and cost

metrics for variable architectural configuration. We have

taken into consideration the continuous drop of the SSD cost

An Empirical and Architectural Study of Using an

SSD-Aware Hybrid Storage System to Improve the

Performance of the Data Intensive Applications

A. Aldahlawi, E. El-Araby, S. Suboh, and T. El-Ghazawi

International Journal of Information and Electronics Engineering, Vol. 2, No. 5, September 2012

730DOI: 10.7763/IJIEE.2012.V2.197

and studied its impact on the cost per I/O with variable

RAM/SSD cost ratios. Our proposed HCA has shown

significant performance improvement in both disk hits ratio

reduction and SSD hits ratio along with low response time

average for the proposed hybrid cache. The proposed

architecture has also revealed some interesting correlation

between the RAM/SSD size and cost ratios.

Fig. 1. Hybrid cache architecture.

Fig. 2. HDD & SSD integration techniques.

II. BACKGROUND

Even though storage systems have advanced in terms of

their capacity and internal architecture, they still lag behind

the speed of current advanced processors. One way to

overcome this gap is to add more memory to the system in

order to cache as much data as we can in order to minimize

the disk accesses, however, even though adding more RAM

lets systems store larger working sets in memory, the result is

an expensive system that is highly unreliable due to the

volatility of the RAM. As a result, many attentions has been

given to optimize the storage system speed using various

approaches such as caching, intelligent perfecting, and smart

scheduling techniques [1]-[4], nevertheless, the storage

system remains the performance nightmare for most

computer systems performance analyst and designers.

Current average seeks time for advanced server drive is

usually 4 ms and around 8 ms for desktop computers [5], the

rotation time on the other hand depends primarily on the total

number of Rounds Per Minutes (RPM) that can be achieved

by the storage device. The rotation delay also determines the

maximum throughput that can be achieved by the storage

device. For example, a high-end magnetic disk with 15K

RPM can achieve up to 70MB/s [6]. The seek latency and

maximum bandwidth are impairing the processor's speed and

therefore reducing the total IOPS achieved by the processor.

The problem gets even worse when a computer system is

running I/O intensive applications [7] such as Data Base

Management System (DBMS), Multimedia, scientific, or any

other out-of-core application. As these applications process

large amount of data; they require frequent rapid accesses to

the storage device in order to run in an acceptable time.

Application and system designers are always characterizing

the access patterns of these I/O intensive applications in order

to minimize the storage device latency. A new hope has

emerged with the SSD devices as their internal design does

not contain any moving parts, however, most I/O intensive

applications developed over the last thirty years are heavily

optimized around the model of a rotating disk. As a result,

simply replacing a magnetic disk with SSD devices does not

yield better performance. These applications have to be

redesigned in order to leverage the potential of SSD [6], [8].

III. RELATED WORK

Recent researches have looked into the potential of

integrating SSDs with the current storage devices to form a

hybrid storage model in order to exploit the potential of both

types of storage devices. Integrating SSDs with the current

storage systems that uses magnetic disks can be internal or

external. See Fig. 2. For internal integration, SSD can be

embedded within the hard disk device to provide extended

cache for large and fast buffering [9], this approach has been

implemented by some storage manufactures [10]-[12].

External integration however raises many fundamental

questions to ask, these question are primarily focusing on

how SSD can be integrated within the current memory

hierarchy. For example, should the operating system consider

the SSD as a memory extension [6]-[16] or disk extension?.

Additionally, if the operating system considers SSD as disk

extension, should it be used as same level storage extension

[17], [18] or used as a multi-tier storage hierarchy.

Furthermore, in case of multi-tier hierarchy, should SSD be

used as a write-back cache to absorb and hide the

synchronous write latency generated by some applications

[19] or should a magnetic disk be used as a write cache to

hide the SSD poor random write [6], [16] or should SSD be

used as an external read cache to the storage device. Finally,

how different designs are going to impact various

applications with different access patterns. Some researchers

believe that SSDs have revolutionized the memory hierarchy

by presenting themselves as a new storage layer that perfectly

fits between the memory and the storage devices and provide

substantial improvement in many aspects such as total

storage system cost, access latency, and power consumption

[20]. Koltsidas and Viglas [13] has proposed a multi-level

cache design using SSD, they have established a 3-tier (RAM,

SSD and HDD) memory hierarchy and investigated the flow

of pages across the memory hierarchy for different workloads.

They have defined three invariant schemes namely inclusive,

exclusive and lazy, their schemes are related to the

coexistence of pages in the memory hierarchy; they argue

that page replacement policy is orthogonal to their page

coexistence schemes; therefore, their schemes may be used

International Journal of Information and Electronics Engineering, Vol. 2, No. 5, September 2012

731

with any replacement policy. They also claim that their work

is analytical study of the techniques engineered in Sun ZFS

file system and therefore it is complementary to their work

and can provide a suitable implementation basis. However,

we observe some key differences between their work and

ZFS implementation in terms eviction policy. In ZFS

implementation which is based on Adaptive Replacement

Cache [21], there is no eviction line between the memory and

SSD, the ARC policy evicts page prematurely by monitoring

the tail of the RAM cache in order to avoid SSD write latency.

We argue here that their first and second schemes are not

suitable for and I/O intensive application especially if these

application have a random write access pattern unless it is

implemented on a write-optimized SSD. In [17], Koltsidas

and Viglas also proposed using hybrid storage for a database

where they treat both SSD and magnetic disk at the same

level of the memory hierarchy meaning that the SSD is not

used as a cache for the magnetic disk. They have designed a

set of online algorithm that can be applied at the storage

controller level to filter out workloads based on their read or

write intensity, pages with write intensive will be placed on

magnetic to avoid poor write latency of SSD disk while pages

with read intensive placed on SSD. Their algorithm is

adaptive and will change placement based on the workload

access patterns. In a recent work from Microsoft Research

[16], Narayanan and Theresa, have found that replacing

magnetic disks with SSD is not cost effective for any

workload, interestingly; they have concluded that depending

on different workloads, SSD capacity per dollar amount has

to increase by a factor of 3-3000 in order to break even with

magnetic disk. They have also looked at the cost-benefit

trade-offs of various SSD and disk hybrid configurations,

particularly, using SSD as a RAM cache extension and as

write-back cache to hide the latency of the underlying storage

device. They have found that only 10% of their workload can

benefit from using SSD in a hybrid two-tier configurations

due to the current high capacity per dollar SSD cost. Among

all hybrid storage models and implementation, Sun has

proposed a unique hybrid model [22] and implemented it in

ZFS file system [23], their model is 3-tier memory hierarchy

of RAM cache (ARC level-1 Cache), SSD(s) level-2 cache

(L2ARC) and the underlying storage device(s), see Fig. 3.

The uniqueness of their model is based on an Adaptive

Replacement Cache [21] which stems from the fact that there

is not eviction line between the ARC cache and L2ARC

cache. Instead, ZFS file system will monitor the tail of ARC

and evict (every 200 ms by default) data blocks prematurely

and asynchronously from ARC to L2ARC in order to avoid

poor write latency of SSD device. This innovative idea has a

price to pay, the L2ARC will need some time to be filled up

(warm up time), and this time depends on the workload

access patterns and the ratio between the working set size and

the ARC size.

IV. PROPOSED HYBRID CACHE ARCHITECTURE

In order to further evaluate the performance of a new 3-tier

memory hierarchy and impalement our own page

replacement policy, we have extended our research by

proposing a new SSD-Aware Hybrid Caching Architecture

that uses SSD as an extended read cache to main memory. A

key issue in integrating the SSD within the current memory

hierarchy is to optimize the I/O characteristics of the SSD by

utilizing its exceptional random read performance while

minimizing its write/update latency. When using SSD as a

cache extension to RAM, a system designer will have to

decide the size of the main memory and the size SSD cache

taking into account the cost of each component. Another

consideration is the price/performance trade-off for

integrating the two caches.

Fig. 3. ZFS implementation.

Fig. 4. HCA implementation.

Furthermore, when given a specific budget, the question to

ask is what is the right balance that will lead to the best

performance while maintaining the lowest cost?. Another

issue the system designer has to decide is the rules that

govern the migration of data between the two storage layers,

to elaborate more, a replacement policy must take into

consideration the physical characteristics of the SSD cache in

order to utilize its excellent read latency while avoiding

excessive update that will lead to poor performance. We are

proposing a hybrid cache architecture that utilizes the

co-existence of SSD with the memory hierarchy. An abstract

view of our proposed Hybrid Cache Architecture is shown in

Fig. 1, it consists of a main memory used as L1 Cache, an

SSD used as an extended L2 Cache, and magnetic disk (with

small internal cache) used for persistent storage. An

additional temporary storage used as a Transient Buffer (TB),

The transient buffer is a DRAM side buffer that is used to (i)

store evicted pages from RAM cache in order to avoid

excessive SSD update, (ii) process and evict pages based on

their locality to minimize the number of SSD blocks that will

International Journal of Information and Electronics Engineering, Vol. 2, No. 5, September 2012

732

hold the evicted pages from transient buffer. In order to

further reduce the probability of excessive SSD update, our

architecture adopts the exclusive principle of multi-level

caching, i.e., a page cannot coexist in the both caches at the

same time, it can either be in RAM Level-1 (L1) Cache or

SSD Level-2 (L2) cache. The Architecture also includes a

hybrid cache directory that keeps tracks of the location of

each page in the hybrid cache. A detailed page replacement

algorithm that will utilize the proposed hybrid cache

architecture is shown below. In our replacement policy

algorithm, when a page is referenced by an application, it is

first looked for in L1 Cache, if the page is found, a RAM hits

occurs and a page is returned to the application. If the page is

not found, it is looked for in the L2 SSD cache, if found, a

space needs to be freed (in case L1 Cache is full) in L1 cache

before moving the page up in the hierarchy, a hybrid cache

directories is also updated to reflect the most recent locations

of migrated pages. If the page is not found in either L1 cache

or L2 cache, the transient buffer is searched as well, the page

is returned if found, otherwise the page is retrieved from the

magnetic disk. L1 RAM cache is always checked for free

space and a page is evicted (based on Least Frequently Used

LFU Policy) to the transient buffer if space is needed to store

new page in L1 cache. We varied the transient buffer size

during our experiments and observed some improvement in

the extended cache average response time and IOPS.

Detailed results will follow in subsequent sections.

V. EXPERIMENTAL SETTINGS

In this section, the experimental settings are explained for

both real system experimentation as well as the simulation

based proposed architecture.

A. SSD-Aware Real System

For a real system setup, we will characterize and evaluate

the performance of the hybrid storage model implemented by

the Sun's ZFS file system. Our main aim is to investigate the

impact of using SSD as a RAM cache extension (L2ARC).

We have used Filebench benchmark tool [24] to generate two

different workloads namely Random Read and OLTP

workloads with 10 GB working set for each workload. We

have ran each workload twice, a baseline run with standard

7500 (Round Per Minutes) RPM disk and another run with a

hybrid storage by using off-the-shelf Lexar

(LJDTT32GB-000-1001D) 32 GB SSD flash. The whole

experiments implemented on a Sun Fire X2270 Server with

Opensolaris (2009.06). Each experiment ran for six hours to

guarantee enough warm-up time for the SSD cache. It is

worth indicating that using off-the-shelf SSD was deliberate

since our aim is to use the SSD as a read level-2 cache

extension to improve the workloads' read performance and

therefore not to worry about poor write performance of this

cheap device. Although our server has 6 GB of RAM, we

have limited the ARC cache to 2 GB to maintain a 5x ratio

between the working set size and the ARC cache available to

the file system which will guarantee ARC cache misses and

therefore L2ARC hits. The file system record size was set to

8K bytes for the OLTP workload benchmark to emulate a real

OLTP applications, the other workload was also ran on 8K

record size to maintain fair comparison between the two

workloads. All the performance data was collected using

commands that capture snapshots from the operating system's

Kernel. Finally and as an extension to our work, We have

conducted twenty seven additional experiments by

configuring the RAM sizes to 2,4,6 GB, SSD size to 4,6,8 GB

and varying the working sets size to equal 10,15,20 GB. The

main objective of these additional experiments is to configure

variable RAM, SSD, Working set combinations and

monitoring the performance gain achieved by each

configuration. We have also used Filebench benchmark to

generate the workloads; again, we have ran each workload

twice, a baseline and a hybrid storage system by using the

same off-the-shelf Lexar SSD. The experiments were

implemented on the same machine.

B. HCA Simulation Setup

In simulating our proposed Hybrid Cache Architecture, we

have developed a simulator to evaluate the performance of

our architecture and integrated it with the standard Disksim

simulator [25]. The L2 SSD cache and magnetic disk

response times were collected from Disksim along with IOPS

for both devices. On the other hand, the hits ratios for each

system components were monitored by our simulator. The

interaction between our simulator and Diskism is in the form

of reduced trace file. Whenever, an I/O miss occurs in either

L1 RAM cache or L2 SSD Cache, a new I/O request is added

to the corresponding trace file, these two reduced size trace

files are passed over to Disksim and performance metrics is

gathered and used by our simulator. A detailed view of the

interaction with Disksim is shown in Fig. 4. Our simulator

was implemented in standard C language and all performance

evaluations ran on 131 nodes SUN X2200 M2 X64 cluster

machine in order to test large number of experiments. A

variable RAM/SSD size ratios were used to evaluate our

architecture, we have also used variable RAM/SSD cost ratio

in order to consider future anticipated reduction in the SSD

cost. We have varied the Transient Buffer size in order to

evaluate its impact of our performance metrics. Finally, we

ran each experiment twice to compare the baseline with the

hybrid cache configuration for two I/O intensive workloads;

a financial trace and a Web Server trace obtained from the

Storage Performance Council [26].

VI. RESULTS FOR REAL SYSTEM EXPERIMENTS

As we have indicated above, each workload ran for six

hours in order to allow enough time for the SSD cache to be

populated. Based on observations from our experiments, we

have seen that L2ARC cache is populated at different rate for

each workload, for example, the random read required 4.5

hours to fully migrate the working set from level-1 ARC

cache to L2ARC SSD cache, the OLTP workload however,

required almost the same time to migrate 80% of the working

International Journal of Information and Electronics Engineering, Vol. 2, No. 5, September 2012

733

set to the L2ARC SSD cache, the remaining 20% working set

could not be migrated to the SSD during the remaining 1.5

hours, we characterize this to the fact that the OLTP

workload includes updating some data blocks which means

that the workload is invalidating these dirty blocks and

constantly dropping them from L2ARC SSD due to the

workloads behavior.

A. Performance Metrics

In our experiments, we have collected snapshot from the

Kernel's performance data using some system commands that

reflects real time performance data every 60 seconds. The

main aim of our empirical study was to evaluate the hybrid

storage model performance using some critical metrics such

as, the ARC hits ratio, the L2ARC hits ratio, the disk hits

ratio, the workload's IOPS, the file system's IOPS, the storage

system IOPS, the latency per IO, and the dollar amount cost

per IO. This last metric was calculated by dividing the total

combined cost of the hard disk and SSD ($250) by the total

achievable IOPS for all the 360 snapshot intervals. We have

measured all these metrics in the baseline run and the hybrid

run and compared the performance gain and the reduction in

Random Read Workload.

Fig. 5. Baseline hits ratio for random read workload.

This workload generate a pure random read on a 10 GB

working set, it involves heavy random seeks within a single

large file. Table I shows the improvement of our metrics, we

clearly see a substantial improvement of IOPS rate by 17.26x

for the workload , the IOPS for file system and the storage

system have also improved by 17.08x and 16.42x

respectively.

Fig. 6. Hybrid storage hits ratio for random read workload.

Fig. 5 shows that the ARC and Disk Hits ratio for the

baseline storage is stable overtime; we also see that the disk

hits ratio is more than 75% which is due to the large working

set and the limited available ARC cache.

Fig. 7. Disk hits ratio reduction for random read workload.

Fig. 8. ARC hits ratio for random read workload.

TABLE I: RANDOM READ WORKLOAD

Experimental Metrics Baseline Hybrid Improvement

Workload AVG IOPS 138.5 2390.4 17.26X

File System AVG IOPS 135.22 2309.6 17.08X

Storage AVG IOPS 105.22 1728.09 16.42

ARC Hits Ratio (%) 24.34 25.01 1.03X

L2ARC Hits Ratio (%) N/A 72.34 -

Disk Hits Ratio (%) 75.66 2.65 < 73.01 %

AVG Latency Per IO

(ms)

0.09 0.04 < 30.77 %

AVG Cost Per IO ($$) 1.89 0.94 < 33.22 %

TABLE II: OTLP WORKLOAD
Experimental Metrics Baseline Hybrid Improvement

Workload AVG IOPS 378.6 1050 2.77X

File System AVG IOPS 184.3 509.31 2.76X

Storage AVG IOPS 140.09 418.51 2.99X

ARC Hits Ratio (%) 53.26 50.29 > 0.94X

L2ARC Hits Ratio (%) N/A 37.64 -

Disk Hits Ratio (%) 46.74 12.07 < 34.67 %

AVG Latency Per IO

(ms)

0.80 0.22 < 21.57 %

AVG Cost Per IO ($$) 1.44 0.71 < 33.02 %

Fig. 6 and Fig. 7 show the different hits ratios when we ran

this workload on a hybrid model, the disk hits ratio has been

dropped to only 2.65% which is a significant reduction in

disk access and substantial performance gain for both the

workload and the file system. Fig. 6 also shows how SSD hits

ratio is improving over time as data migrates and therefore

retrieved from SSD. Fig. 5 and Fig. 8 show that the ARC hits

ratio is almost the same for both the baseline and the hybrid

storage, we believe that the ratio between the working set size

and the ARC size the crucial factor that determine the ARC

International Journal of Information and Electronics Engineering, Vol. 2, No. 5, September 2012

734

hits ratio regardless of the absence or the presence of SSD

L2ARC cache. Fig. 9 shows clear speed up of the file system

IOPS jumping from 135 to 2309 IOPS as data block being

migrated to L2ARC cache. Similar gain is shown in Fig. 10

for the hybrid storage reaching 1728 average IOPS. Fig. 11

also proves that latency per single IO is being reduced over

time which is also applicable to the dollar mount cost per

single IO shown in Fig. 12. Fig. 13 is interestingly showing

the source of retrieving data overtime; it shows that as data

blocks being migrated to L2ARC cache, the storage system

will retrieves data blocks from SSD rather than hard disk

storage which means higher IOPS rate.

Fig. 9. File system IOPS for random read workload.

Fig. 10. Storage system IOPS for random read workload.

Fig. 11. Latency per I/O for random read workload.

B. OLTP Workload

This workload emulate the I/O access patterns of Oracle

11g database, it read from 9 files with 1 GB each plus an

additional 1 GB used to mimic a database log file. Table II

summarizes the result of running this workload on the

baseline and the hybrid storage. We notice that the IOPS

performance gain for the workload, file system and storage

system is almost 3X. We attribute this relatively low

improvement to the fact that the workload is not only

performing IOs, it generates fake CPU cycles, deliberate I/O

wait and writes logging information to emulate real Database

Management System. These additional overheads will not

fully utilize the hybrid storage model like the pure random

read. Nevertheless, a 3X improvement for a ($55) amount is

an interesting gain.

Fig. 12. Cost per I/O for random read workload.

Fig. 13. I/O Source for random read workload.

Fig. 14. Baseline hits ratio OLTP workload.

Fig. 15. Hybrid storage hits ratio for OLTP workload.

International Journal of Information and Electronics Engineering, Vol. 2, No. 5, September 2012

735

Fig. 16. Disk hits ratio reduction for OLTP workload.

Fig. 14 shows that the baseline ARC and Disk hits ratio are

consistent over time. The ARC Hits ratio of this workload

(53.26%) is much more than the previous workload (24.34%),

we believe that the high ARC hits ratio for the OLTP

workload compared to the random read workload is caused

by less data being placed on ARC by the OLTP workload due

to its I/O access pattern. Additionally, when we move to the

hybrid storage, the L2ARC picks more that 37% of the hits

leaving only 12% as disk hits compared to 46% disk hits for

the baseline storage. Fig. 15 and Fig. 16 clearly shows

significant reduction of disk hits ratio over time dropping

from more than 90% to less that 10% at the end of the

benchmark. Fig. 15 also shows how data migrates to SSD

over time and therefore improving the SSD hits ratio. Again,

Fig. 17 shows that the ARC hits ratio is almost the same for

both the baseline and the hybrid storage , we also believe that

the ratio between the working set size and the ARC size the

factor that determine the ARC hits ratio regardless of the

absence or the presence of SSD L2ARC cache. Fig. 18 and

Fig. 19 show the IOPS improvement for both file system and

hybrid storage as data block migrated to SSD device over

time. The latency and dollar amount per IO have also been

improved as shown in Fig. 20 and Fig. 21. Finally, Fig. 22 is

consistent with the fact that data block are retrieved from

L2ARC as time progresses which leads to substantial

improvement for the file system and the workload IOPS.

C. Results from Extended Experimental Work

Variable RAM, SSD and Working sets configurations

revealed much more interesting results. We have conducted

an additional twenty seven experiments with different

configurations and gathered the results shown in Tables 3 to

8. These tables show the result of three metrics for the same

workloads, however, different working set sizes are used in

these workloads. It can be seen by examining the columns of

Table III and Table IV that the disk hit ratio is decreasing

with the increase of the SSD cache size for both workloads.

These results are expected since the SSD is being used to

retrieve data which means less access to the hard disk and

therefore more achieved IOPS because of the faster SSD

devices. Table III and Table IV show the SSD and disk hit

ratio for the random read workload with different variation of

SSDs and working sets sizes while restricting the RAM cache.

These two tables show that the disk hit ratio is proportional to

the working set size in a fixed SSD cache size. Additionally,

the SSD hit ratio is inversely proportional to the working set

size in a fixed SSD cache size since the SSD cache hits are

less likely with an increasing working set size. However, the

SSD hit ratio is increasing with an increasing size of the SSD

cache as more data are migrated to the larger SSD cache.

Table 6 also shows that the random read IOPS is inversely

proportional to the working set size in a variable RAM and a

fixed SSD cache sizes. This observation is expected since the

achieved IOPS are determined by the sizes of the RAM and

SSD caches. Additionally, the IOPS are proportional to SSD

cache size because more data is successfully retrieved from

these fast devices. Furthermore, the IOPS is somewhat

proportional to the RAM cache size in a fixed SSD and

working set sizes. A spike in the 8 GB SSD Cache size is

attributed to more data being accessed from a larger SSD

cache over longer time compared to smaller SSD caches.

Table 6 and Table 7 respectively show the disk and SSD hit

ratios for the OLTP workload with different variation of SSD

and working sets sizes while restricting the RAM cache.

Fig. 17. ARC hits ratio for OLTP workload.

Fig. 18. File system IOPS for OLTP workload.

Fig. 19. Storage system IOPS for OLTP.

International Journal of Information and Electronics Engineering, Vol. 2, No. 5, September 2012

736

Fig. 20. Latency per I/O for OLTP workload.

Fig. 21. Per I/O for random OLTP workload.

Fig. 22. I/O source for OLTP workload.

This workload might update data blocks in the SSD cache

and therefore invalidate and evict them to the Disk. The

tables show that the disk hit ratio is proportional to the

working set size in a fixed SSD cache size since more disk

hits are expected with larger working sets. Additionally, the

disk hit ratio is inversely proportional to an increasing SSD

cache size as more data are retrieved faster from the SSD

rather than the disk. The disk hit ratio also dominates over the

RAM and SSD hit ratio especially for larger working set sizes

as an increasing number of data blocks are evicted and

therefore retrieved from the disk due to data blocks

invalidation. Furthermore, the SSD hit ratio is inversely

proportional to the working set size in a fixed SSD cache size

while the SSD hit ratio is proportional to an increasing SSD

Cache size as expected. Finally, Table 8 shows that the IOPS

for the OLTP workload is inversely proportional to the

working set size in a variable RAM and a fixed SSD.

TABLE III: DISK HITS RATIO FOR RANDOM READ WORKLOAD

TABLE IV: SSD HITS RATIO FOR RANDOM READ WORKLOAD

TABLE V: IOPS FOR RANDOM READ WORKLOAD

TABLE VI: DISK HITS RATIO FOR OLTP WORKLOAD

TABLE VII: SSD HITS RATIO OLTP WORKLOAD

TABLE VIII: IOPS FOR OLTP WORKLOAD AND VARIABLE RAM, SSD

VII. HYBRID CACHE ARCHITECTURE SIMULATION METRICS

& RESULTS

A. Performance Metrics

We have identified some specific performance metrics in

order to evaluate our proposed hybrid cache architecture,

some of these performance metrics relate to the hits ratio of

various components of the memory hierarchy while others

relate to the cost per I/O and cost reduction which is one of

the primarily advantage of using SSD as an extended L2

Cache. The RAM Hits Ratio (RHR), SSD Hits Ratio (SHR),

Disk Hits Ratio (DHR), Disk Response Time Average (RTA),

and I/O Per Seconds (IOPS) are the main metrics measured.

These three metrics are relative to the three memory

hierarchy components and are calculated by dividing the total

International Journal of Information and Electronics Engineering, Vol. 2, No. 5, September 2012

737

component's hits by the total number of I/Os processed by the

simulator. We have also identified other performance

evaluation metrics that are needed to evaluate our hybrid

architecture such as Extended Cache Response Time

Average (XCRTA), Hybrid Cache Response Time Average

(HCRTA), Baseline Disk Response Time Average (BDRTA)

and Hybrid Cache Disk Response Time Average (HCDRTA),

the Extended Cache IOPS (XCIOPS). The Cost Per I/O and

Cost Reduction Ratio are measured by each experiments in

order to observe the impact of each component of the

memory hierarchy. The following equation (1, 2, 3, 4 and 5)

are used to calculate these metrics.

XCRTA = SSD RTA _ SHR (1)

HCRTA = RHR _ (DRAM Latency) + SHR _ XCRTA (2)

XCIOPS = SSD IOPS _ SHR (3)

 BDRTA = Baseline DHR _ Disk RTA) (4)

HCDRTA = Hybrid DHR _ Disk (RTA) (5)

We believe that the hits ratio of each component of the

memory hierarchy is a crucial factor in measuring these

performance metrics as they indicate the contribution of each

component in the system. The results in the next section

substantiate the impact of the hits ratios on each metrics.

B. Hybrid Cache Architecture Results

Two I/O intensive real trace workloads have been used to

evaluate our hybrid cache architecture. Fig. 23 and Fig. 24

show the hits ratios for the two workloads with a transient

buffer size fixed to (64K). They show how RHR, DHR for

baseline and RHR, SHR and DHR for the hybrid cache are

varying with variable RAM/SSD size ratios. Fig. 26 clearly

shows that the disk hits ratio is decreasing for various

RAM/SSD size ratio as evicted pages are migrating from L1

RAM cache to L2 SSD cache. Furthermore, it shows that the

RAM hits ratio has also increased slightly because we count

the page hit in the transient buffer as a RAM hit since they

both use the same media.

Fig. 23. Financial trace hits ratio for baseline & hca.

The figure also shows that the SSD hits ratio is increasing

over time as it is being filled by excessive pages from L1

Cache. It is also observable from the figure that the RAM hits

ratio is increasing as the size of the RAM grows and exceeds

the size of the SSD cache, this increase is expected since

more pages are found and retrieved from L1 RAM Cache. Fig.

27 shows better SSD L2 hits ratio since the Web Server trace

is predominately read I/O request and less update is required

on the SSD cache. Fig. 25 and Fig. 26 show the hybrid cache

response time average (HCRTA) for both Financial and Web

Server Traces, it is shown from Fig. 25 that the HCRTA is

fluctuating when the L1 RAM cache size is relatively small

and more I/O requests are being satisfied from L2 cache

which has unstable response time average due to the nature of

the I/O trace and impact of the SSD updates on the

performance. The figure interestingly shows that the transient

buffer has improved the HCRTA by absorbing some I/O

requests as we have mentioned before. Fig. 26 Shows stable

HCRTA for the Web Server Trace since it is primarily a read

trace and therefore does not generate more SSD update to

negatively impact the performance of the L2 Cache. The

transient buffer has almost no impact in this trace as the

majority of I/O request are reads.

Fig. 24. Web trace hits ratio for baseline & hca.

Fig. 25. HCRTA for financial trace.

Fig. 26. HCRTA for web trace.

Fig. 27 and (Fig. 28) show that extended cache IOPS

International Journal of Information and Electronics Engineering, Vol. 2, No. 5, September 2012

738

achieved by the L2 Cache for variable transient buffer sizes,

they clearly see that larger transient buffer size has decreased

the IOPS achieved by the cache, we believe that the time

needed to process the content of the transient buffer impacted

the total achieved IOPS. We also observed that the financial

trace IOPS for variable transient buffer size are almost the

same when using larger RAM cache, we also believe that

larger RAM cache size will always lead to less I/O on the L2

cache and therefore less extended cache IOPS. It is also

observable that the IOPS for the Web Server trace (14000

IOPS) is much higher that the Financial trace (3000 IOPS),

again, the nature of the Web Server trace as being majority of

read requests has perfectly utilized the L2 Cache and

produced the best performance of the cache.

Fig. 27. XCIOPS for financial trace.

Fig. 28. XCIOPS for web trace.

VIII. CONCLUSION AND FUTURE WORK

Our work in this paper is based on Sun 3-tier Hybrid

storage model; we have conducted an empirical and

comparative study to investigate the behavior of the model

when running various I/O intensive workloads along with

variable RAM, SSD configurations. Our objective was to

monitor and measure the hits ratio of L1 cache, L2 cache and

the disk. We have measured other performance metrics such

as latency and dollar cost per IO. Our experiments have

shown the performance of this hybrid storage model is

sensitive to the workload I/O access patterns. Our work

shows that off-the-shelf cheap SSD can lead to substantial

performance gain for some workloads and decent gain for

others.

We have also proposed an SSD-Aware Hybrid Caching

Architecture (HCA) and a replacement policy that uses SSD

as an extended read cache to main memory. We have

developed a simulator to evaluate our proposed architecture

with two I/O intensive workloads. We have also conducted a

cost analysis in order to evaluate the cost reduction for both

real system experiments and simulated architecture. Our

work in both real system and simulated architecture has

shown that SSD can effectively be used as an extended cache

only when an efficient SSD-Aware replacement policy is

used to migrate pages between the cache levels. We intend to

continue this work by following three major enhancements.

First, We will use the SSD as an extended cache to the

magnetic disk in order to further minimize the disk hits ratio,

second, we will enhance our SSD-Aware algorithm by

exploiting the locality among pages which we believe will

lead to better RAM and SSD hits ratio and better utilization

of the hybrid cache architecture. Third, we are also interested

in optimizing this hybrid storage model to find out the right

balance between different components within the memory

hierarchy in order to reach the best I/O performance given a

specific budget.

REFERENCES

[1] A. Amer and D. D. L. Noah, “Low-cost file access prediction through

pairs,” in Proceedings of 20th International Performance, Computing

and Communications Conference, 2001.

[2] T. M. Kroeger and D. D. Long, “The case for e_cient file access pattern

modeling,” in Proceedings of the 7thWorkshop on Hot Topics in

Operating Systems, 1999.

[3] X. Ding, S. Jiang, F. Chen, K. Davis, and X. Zhang, “Exploiting disk

layout and access history to enhance i/o prefetch,” in USENIX Annual

Technical Conference, pp. 261–274, 2007.

[4] J. Gri and R. Appleton, “Reducing file system latency Using a

predictive approach,” in USENIX Summer Technical Conference, pp.

197–207, 1994.

[5] S. W. D. Bruce, and J. Ng, “Memory Systems, Cache, DRAM, Disk, 1st

Edition,” Morgan Kaufman Press, 2008.

[6] A. L. Holloway, “Adapting database storage for a new hardware,” Ph.D.

thesis, University of Wisconsin-Madison, 2009.

[7] J. T. Poole, Preliminary survey of i/o intensive applications, Tech. rep.,

Caltech Concurrent Supercomputing Facilities, [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.9241

[8] R. S. M. A. R. J. A. Ailamaki, “valuating and repairing write

performance on flash devices," in: Fifth International Workshop on

Data Management on New Hardware, pp. 9–14, 2009.

[9] E. N. S. Min, “Current trends in flash memory technology,” in: Fifth

International Workshop on Data Management on New Hardware, pp.

9–14, 2009.

[10] Embedded ssd in HDD, Ever wonder what happens when a Hard Drive

goes bad? REALLY bad

[Online].Available:http://www.samsung.com/global/business/semicon

ductor/support/ brochures/downloads/hdd/hdd_datasheet_200708.pdf

[11] Fusion drive, fusionio [Online]. Available: http://www.fusionio.com.

[12] Windows hardware engineering conference, Samsung printer

convention [Online]. Available:

http://download.microsoft.com/download/9/8/f/

98f3fe47-dfc3-4e74-92a3-088782200fe7/TWST05002_WinHEC05.p

pt.

[13] I. Koltsidas and S. D. Viglas, “The case for ash-aware multi-level

caching.” Tech. rep, University of Edinburgh, EDI-INF-RR-1939.

[Online]. Available:

http://homepages.inf.ed.ac.uk/s0679010/mfcache-TR.pdf.

[14] T. Kgil, D. Roberts, and T. Mudge, “Improving nand flash based disk

caches,” in 35th Annual International Symposium on Computer

Architecture (ISCA), pp. 327–338, 2008.

[15] T. Kgil and T. Mudge, “Flashcache: a nand flash memory. File cache

for low power web servers,” in International Conference on compilers,

Architecture and Synthesis for Embedded Systems, pp. 103–112, 2006.

[16] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and A. Rowstron,

Migrating enterprise storage to ssds: Analysis of tradeo_s, Tech. rep.,

International Journal of Information and Electronics Engineering, Vol. 2, No. 5, September 2012

739

http://ebookfreetoday.com/view-pdf.php?bt=Samsung-printer-convention&lj=http://www.barcode-shop.dk/media/docs/samsung-bixolon-srp-350plus-presentation.ppt
http://ebookfreetoday.com/view-pdf.php?bt=Samsung-printer-convention&lj=http://www.barcode-shop.dk/media/docs/samsung-bixolon-srp-350plus-presentation.ppt

Microsoft Research, IP Going Mannering [Online]. Available:

http://research.microsoft.com/apps/pubs/?id=78895.

[17] S. V. I. Koltsidas, “Flashing up the storage layer,” in Proceedings of

the VLDB Endowment, pp. 514–525, 2008.

[18] A. G. B. U. Y. Kim, “Mix-store, an enterprise-scale storage system

combining solid-state and hard disk drives,” Tech. rep., Computer

Systems Laboratory, Penn. State University, Technical Report

CSE-08-017, MixedStore: An Enterprise-scale Storage System

Combining, Solid-state and Hard Disk Drives [Online]. Available:

http://csl.cse.psu.edu/publications/mixedstore_tr.pdf

[19] T. Bisson and S. A. Brandt, “Reducing hybrid disk write latency with

flash-backed i/o requests,” in Proceedings of the 2007 15th

International Symposium on Modeling, Analysis, and Simulation of

Computer and Telecommunication Systems, pp. 402–409, 2007.

[20] G. Graefe, “The five-minute rule twenty years later, and how flash

memory changes the rules, in Proceedings of the 3rd international

workshop on Data management on new hardware, 2007.

[21] D. S. M. N. Megiddo, “Arc: A self-tuning, low overhead replacement

cache,” in Proceedings of the 2nd USENIX Conference on File and

Storage Technologies, pp. 115–130, 2003.

[22] A. Leventhal, “Flash storage today,” ACM Queue, vol. 6, no. 4, pp.

24–30, 2008.

[23] Zfs file system, WiKipedia [Online]. Available:

http://en.wikipedia.org/wiki/ZFS.

[24] Filebench micro benchmark, SiWiKi [Online]. Available:

http://www.solarisinternals.com/wiki/index.php/FileBench

[25] Disksim storage simulator, The DiskSim Simulation Environment

[Online]. Available: http://www.pdl.cmu.edu/DiskSim

[26] Storage Performance Council. [Online]. Available:

http://www.storageperformance.org.

Abdullah Aldahlawi is a PhD candidate at The george

Washington University, Washington DC, USA. He is a

member of the High Performance Computing LAB

(HPCL) at GWU. His research intrest are HPC,

Information Retrieval, Data Mining, and SSD-Aware

Multi-Level Caching.

Esam El-Araby received his M.Sc. and Ph.D. degrees in

Computer Engineering from the George Washington

University (GWU), USA, in 2005, and 2010 respectively. Dr.

El-Araby joined the Catholic University of America (CUA) as

an Assistant Professor in the Department of Electrical

Engineering and Computer Science in 2010. He is the founder

and director of the Heterogeneous and Biologically-inspired

Architectures (HEBA) laboratory at CUA.

Suboh A. Suboh received his PhD degrees in

Computer Engineering from the George Washington

University, USA, in 2010. During his study, he was

instructor for computer organization,

microprocessor-based design classes. He is currently a

research affiliate at the High Performance Computing

Laboratory (HPCL) at the George Washington

University.

Tarek El-Ghazawi received the PhD degree in

electrical and computer engineering from New

Mexico State University in 1988. He is a professor

in the Department of Electrical and Computer

Engineering at the George Washington University

(GWU), where he also directs the

High-Performance Computing Laboratory (HPCL).

He is a co-founder of the NSF Center for

High-Performance Reconfigurable Computing

(CHREC), and the founding director of IMPACT: the Institute for

Massively Parallel Applications and Computing Technologies. He is a

fellow of the IEEE

.

International Journal of Information and Electronics Engineering, Vol. 2, No. 5, September 2012

740

