
  

  
Abstract— In this research, the complete analytical circuit 

level models of random variations in large and small signal 
parameters of any nanoscale MOS transistor have been 
proposed. Both triode and saturation regions have been 
explored. This research has been performed based upon the up 
to dated nanoscale regime MOS equations with the inclusion of 
all leading sources of variations instead of only threshold 
voltage variation. The proposed models have been verified at 
the nanometer level by using the Monte Carlo SPICE 
simulations and the Kolmogorov-Smirnof goodness of fit tests. 
These models are very accurate since they can fit the Monte 
Carlo based distribution with as high as 99% confidence. 
Obviously, they eliminate the gap between the circuit level and 
physical level design since the mismatches in the circuit level 
parameters can be now analytically formulated in terms of the 
physical level ones. So, the physical level causes and their 
relationships with the resulting circuit level mismatches can be 
revealed. Beside, the proposed models can also be expected to be 
the potential mathematical foundations for implementating the 
Electronic CAD cell libraries of the nanoscale MOS transistors. 
Hence, these models have been found to be efficient for the 
statistical/variability aware design of various CMOS 
analog/mixed signal circuits and systems in the nanoscale 
regime. 
 

Index Terms— Nanoscale, CMOS, analog, mixed signal, 
circuit level, physical level, statistical design, variability aware 
design, circuit, system. 
 

I. INTRODUCTION 
Random variations in MOS performances play a very 

important role in the statistical/variability aware design of 
CMOS analog/mixed signal circuits and systems. These 
variations produce the random mismatches in MOS physical 
parameters such as threshold voltage, gate oxide capacitance 
and mobility etc., which are traditionally modelled as 
normally distributed random variable with zero mean while 
many formulas have been proposed for the variances for 
example those in [1], [2], [3], [4] and [5] etc.  

For the analysis/design simplicity, random variations in 
MOS circuit level parameters have been studied and 
modelled as proposed in many previous researches for 
example [5], [6] and [7] etc. In [6], the percentage of 
variations in drain current (Id) which is a key large signal 
circuit level parameter and the related small signal 
parameters have been modelled as the functions of the 
percentage of variation in threshold voltage. However, the 
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model derivation basis adopted in [6] relies on the simple 
sensitivity analysis which only the standard deviations of the 
related parameters involved, where as the corresponding 
distribution functions have not been discussed. Furthermore, 
both [5] and [6] have been performed based upon the 
conventional MOS equations which are invalid in the 
nanoscale regime. 

In [7], the models of random variation in Id have been 
proposed as the analytical expressions and distribution 
functions not just the standard deviations. Obviously, means, 
variances, moments and other statistical parameters can be 
determined by using these models. Both triode and saturation 
regions have been considered. Unlike [5] and [6], this 
research has been performed based upon the up to dated 
nanoscale regime MOS equations [8]. However, the models 
in [7] are incomplete since it take only the threshold voltage 
variation into account where as the other leading variations 
are neglected. Furthermore, the similar models for the related 
small signal parameters have not been derived even though 
they are also necessary. 

Hence, the complete analytical models of random 
variations in nanoscale MOS transistor large and small signal 
parameters which are of the circuit level, have been proposed 
in this research with the improvement as the inclusion of the 
other leading sources of variations apart from the threshold 
voltage variation. The proposed models have been verified at 
the nanometer level by using the Monte Carlo SPICE 
simulations and the Kolmogorov-Smirnof goodness of fit 
tests. These models are very accurate since they can fit the 
Monte Carlo based distribution with as high as 99% 
confidence.  

Obviously, the proposed models can effectively eliminate 
the gap between the circuit level and physical level design 
since the mismatches in the circuit level parameters can be 
now analytically formulated in terms of the physical level 
ones.  As such, the mismatches in the key parameters of any 
circuits and systems which are traditionally expressed at the 
circuit level can be now analytically expressed in terms of the 
physical level parameters. So, the physical causes and their 
relationships to the corresponding circuit level random 
mismatches can be revealed. Furthermore, the models can be 
expected to be the potential mathematical foundations for 
implementating the Electronic CAD (ECAD) cell libraries of 
the nanoscale MOS transistors. Hence, the proposed models 
have been found to be efficient for the statistical/variability 
aware design of various CMOS analog/mixed signal circuits 
and systems in the nanoscale regime 
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II. THE PROPOSED MODELS 
In this section, the proposed models for both triode and 

saturation regions will be discussed respectively. Before 
proceed further, it should be mentioned here that the 
Pelgrom’s model for the variation in threshold voltage [1] 
which has been adopted in [7], is also adopted in this research. 
At the nanoscale regime, the devices are closely spaced. 
Hence, the distribution function of the random threshold 
voltage variation (∆Vt) can be given by [7] 
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where AVt , δVt , W and L denote the proportional constant of 
random threshold voltage variation, any sampled value of 
∆Vt , channel width and channel length respectively [7]. 

Unlike [7], the other variations apart from ∆Vt are also 
taken into account. Even though each of these variations is 
small, their overall combination significantly affects the 
transistor performance. So, such combination is considered. 
The variation in the current factor (Δβ) is the result of the 
cited combined variations. Obviously, the current factor (β) 
can be given by [5] 

 

L
WCoxμβ =           (2) 

 
where µ and Cox denote the carrier mobility and the gate 
oxide capacitance of the MOS transistor respectively.  

It can be seen that the variations in µ, Cox, W and L and 
yield Δβ because β is the function of µ, Cox, W and L as 
shown above. This can be quantitatively stated that since 
there is none of any correlation between µ, Cox, W and L, the 
variance of Δβ ( )(2 βσ Δ ) can be given by [1]

   
 
 

)()()()()( 22222 LWCox Δ+Δ+Δ+Δ=Δ σσσμσβσ
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where )(2 μσ Δ , )(2
oxCΔσ , )(2 WΔσ and )(2 LΔσ denotes the 

variances of Δµ, ΔCox, ΔW and ΔL which are the variations 
in µ, Cox, W and L respectively. It can be seen from (3) 
that )(2 βσ Δ is the combined results of )(2 μσ Δ , )(2

oxCΔσ , 

)(2 WΔσ and )(2 LΔσ .   
For convenience, the per-unit form of Δβ denoted by Δβ/β 

is always preferable. Such Δβ/β is adopted in many recent 
researches for example [9], [10] and [11]. So, this research 
has also been conducted by following this fashion. 
Furthermore, since the often cited Pelgrom’s model for Δβ/β 
[1] has been applied in recent researches such as [10] etc., it 
is also adopted here as well. As the devices are closely spaced 
in the nanoscale regime, the distribution function of Δβ/β can 
be given by  
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where Aβ and δβ/β denote the proportional constant of 
Δβ/β and any sampled value of Δβ/β respectively [1, 5 and 
10]. In the upcoming subsection, parts of the proposed 
models for the triode region of operation will be discussed. 

A. Triode region models  
At the circuit level, the key parameter for large signal 

operations is Id as mentioned above. So, the modelling for 
large signal is focused on the random variation in the drain 
current (ΔId). Hence, the resulting large signal models are the 
analytical expression of ΔId along with its distribution 
function which will be now presented by starting from their 
derivations.   

In the ideal situation where any random variation can be 
neglected, Id of the nanoscale transistor operated in the triode 
region of operation can be given in term of β by [8] 
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where Vgs, Vds, Vt and Vc denote gate-source voltage, 
drain-source voltage, threshold voltage and critical voltage 
respectively. It can be seen that the above Id(ideal) is actually 
similar to that proposed in [7] by using the following simple 
relationship  
 

μ
sat

c
LvV =           (6) 

 
where vsat denotes the saturation velocity. However Id(ideal) as 
in (5) is preferable here due to its simplicity. Obviously, 
Id(ideal) is a deterministic variable.   

Including the effect of ∆Vt and Δβ which are random 
variables as stated earlier, Id becomes a random variable and 
can be given based on Δβ/β by 
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So, the resulting ΔId can be simply determined from (6) 

and (7) as a linear function of ∆Vt and Δβ/β by using the fact 
that Vt >>∆Vt as follows   
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Obviously, ΔId is a random variable and its distribution 

function can be simply given by (9). At this point, it can be 
stated that parts of the proposed models for the large signal 
parameter of the transistor operates in the triode region are 
given by (8) and (9). This can be alternatively stated that ΔId 

is normally distributed with mean ( dIΔ ) and variance ( 2
dIΔσ ) 

given by (10) and (11) respectively. 
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On the other hand, the key parameter for small signal 

triode region operation is the drain-source conductance (gds) 
since the transistor behaves as an active resistor in this region. 
So, the modelling for small signal parameter of the transistor 
in the triode region is focused on the random variation in the 
drain-source conductance (Δgds). Hence, the resulting small 
signal models in this case are the analytical expression of 
Δgds and its distribution function which will be now 
presented by also starting from their derivations.   

In the ideal situation, gds of the nanoscale transistor 
operated in the triode region of operation can be given by 
using (5) as  
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Obviously, gds (ideal) is a deterministic variable. Including 

the effect of ∆Vt and Δβ, gds which is a random variable and 
can be given based on ∆Vt and Δβ/β by 
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So, the resulting Δgds can be simply determined from (8) 

and (9) as a linear function of ∆Vt and Δβ/β by using the fact 
that β >>∆β as follows 
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Obviously, Δgds is a random variable where its distribution 

function can be simply given by 
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At this point, it can be stated that parts of the proposed 

models for the small signal parameter of the transistor 
operates in the triode region are given by (14) and (15). This 
can be alternatively stated that Δgds is normally distributed 

with the following mean ( dsgΔ ) and variance ( 2
dsgΔσ ). 
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It can be seen from (8), (9), (14) and (15) as parts of the 

proposed models that both ∆Id and Δgds which are the 
variations at the circuit level, are now analytically expressed 
in terms of their physical level causes. The physical level 
causes and their relationships to the resulting circuit level 
variations are now revealed in both deterministic and 
probabilistic senses. As expected, elimination of the gap 
between such two levels is now accomplished. In the next 
subsection, the parts of the proposed model for the saturation 
region of operation will be introduced. 

B. Saturation region model 
Similarly to the triode region of operation, the key large 

signal parameter is Id. So, the modelling for large signal in 
this case is also focused on ΔId and the resulting models are 
the analytical expression of ΔId along with its distribution 
function as well. 

Ideally, Id of the nanoscale transistor operated in the 
saturation region can be given in term of β by [8] 

 

ctgsideald VVVI )()( −= β                  (18) 
 

 Obviously, Id(ideal) is a deterministic variable and is 
actually similar to that proposed in [7] by using (6). 

 Including the effect of ∆Vt and Δβ, Id becomes a random 
variable given by 
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So, the resulting ΔId can be simply determined from (18) 

and (19) as a linear function of ∆Vt and Δβ/β by using the fact 
that β >>∆β as follows   
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Obviously, ΔId is a random variable and its distribution 

function can be simply given by 
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At this point, it can be stated that parts of the proposed 

models for the large signal parameter of the transistor 
operates in the saturation region are given by (20) and (21). 
This can be alternatively stated that ΔId is normally 

distributed with the following mean ( dIΔ ) and variance 

( 2
dIΔσ ) given by. 
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On the other hand, the key small signal parameter for the 

operation in the saturation region is the transconductance (gm) 
since the transistor behaves as a transconductor. So, the 
modelling in this case is focused on the random variation in 
the transconductance (Δgm). Hence, the resulting small signal 
models are the analytical expression of Δgm and its 
distribution function. In the ideal situation, gm of the 
nanoscale transistor can be given by using (18) as  
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Obviously, gm(ideal) is a deterministic variable. Including 

the effect of ∆Vt and Δβ, gm can be given as a function of ∆Vt 

and Δβ/β by 
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So, the resulting Δgm can be simply determined from (24) 
and (25) as  
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Of course, Δgm is a random variable where its distribution 
function can be simply given by 
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At this point, it can be stated that parts of the proposed 

models for the small signal parameter of the transistor 
operates in the saturation region are given by (26) and (27). 
This can be alternatively stated that Δgm is normally 

distributed with the following mean ( mgΔ ) and variance 

( 2
mgΔσ ) given by. 
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Similarly to the triode region case, it can be seen from (20), 

(21), (26) and (27) as parts of the proposed models that both 
∆Id and Δgm which are the circuit level variations, are now 
analytically expressed in terms of their causes at the physical 
level as well. Hence, the similar revelation and elimination of 
the design gap are also accomplished.  

At this point, it can be observed that both ∆Vt and Δβ affect 
the ∆Id of both regions and Δgds where as only Δβ affects Δgm. 
In the other words, without the inclusion of other variations 
apart from ∆Vt, ∆Id of both regions along with Δgds cannot be 
accurately modelled and Δgm cannot even be seen although it 
exists in reality. Hence, inclusion of such other variations has 
been found to be crucial. 

It has been mentioned above that an obvious benefit of the 
proposed models is the ability to reveal the physical level 
causes along with their relationships to the resulting 
variations in the key parameters of any circuits and systems. 
For the illustration of this point, consider a single transistor 
amplifier depicted below.   

 
Fig.1. A single transistor amplifier 

 
The most important key parameter for this circuit is the 

voltage gain (Av) which can be approximately given by  
 

Dmv RgA −=                   (30) 
Without the proposed models, the variation in Av must be 

analysed in the traditional fashion which such variation can 
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be modelled in term of the voltage gain variance ( 2
vAσ ) and 

can be given in term of the transconductance variance ( 2
mgσ ) 

by 
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where vA

mgS denotes the sensitivity of Av to gm which can be 

defined as 
m
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∂
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It can be seen that only the relationship between the 
variations in Av and gm which are both at the circuit level can 
be observed and the conclusion that the variation in gm is the 
cause of that in Av is drawn. Unfortunately, the physical level 
causes of such variation in Av which is the primary causes 
and the relationship between such causes and such variation 
are unseen. A design gap between the physical level and 
circuit one existed. 

On the other hand, if the proposed models have been 
applied to this analysis, Av can be given by  
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According to the definition of gm(ideal), the ideal Av is given 

by Didealmidealv RgA )()( −= . So, the variation in Av (∆Av) can be 
simply found as 
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With parts of the proposed models for ∆gm, ∆Av and its 
distribution function can be formulated as 
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In the other words, ΔAv is normally distributed with the 

following mean ( vAΔ ) and variance ( 2
vAΔσ  ). 
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It can be seen from (34) and (35) that physical level causes 

and the relationship between such causes and ΔAv have been 
revealed in both deterministic and probabilistic senses. 

According to (2) and (3), these causes are Δµ, ΔCox, ΔW and 
ΔL. Obviously, ΔAv is proportional to Δµ, ΔCox and ΔW and 
inversely proportional to ΔL. So, a design guideline can be 
stated at this point that Δµ, ΔCox and ΔW must be minimized 
in order to reduce ΔAv.  Furthermore, the important statistical 
parameters of ΔAv can be analytically derived as shown in 
(36) and (37) which another design guideline that for any 
certain level of technology W and RD must be minimized in 
order to reduce 2

vAΔσ is yielded. These achievements cannot 
be obtained without the usage of the proposed models. 

III. THE VERIFICATIONS 
The verifications of the proposed models have been 

performed in both qualitative and quantitative aspects. In the 
qualitative sense, the estimated distributions of circuit level 
parameters obtained from the models have been graphically 
compared to their counterparts obtained from the Monte 
Carlo SPICE simulations of the benchmark circuits at 65 nm 
process technology. On the other hand for the quantitative 
point of view, numbers of Kolmogorov-Smirnof goodness of 
fit test (KS-test) have been performed by using the data 
obtained from the qualitative verifications.  

Since the KS-test relies on the cumulative distribution 
function, it is worthy to derive the cumulative distribution 
function forms of (9), (15), (21) and (27) at this point. Such 
cumulative distribution function forms of (9) and (15) which 
are belonged to the triode region can be given by  
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On the other hand, those of (21) and (27) which are of the 

saturation region can be given by  
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where ( )xerf denotes the error function of  any arbitrary 

variable, x which can be mathematically defined as 

( ) .)exp(2
0

2 duuxerf
x

∫ −=
π

   

According to [12, 13], the strategy of the KS-test is to 
performed the comparison of the K-S test statistic (KS) and 
the critical value (c) where it can be stated that any model fits 
its target data set if and only if its KS is not exceed its c [12, 
13]. For this research, KS can be defined as 

})()({max
modelxcircuitxx

xFxFKS δδ
δ ΔΔ −=               

(42) 
where x denotes any circuit level parameters under 
consideration which can be either Id , gm or gds while                             

elx xF
mod

)(δΔ and 
circuitx xF )(δΔ represent the estimated 

distribution of any x obtained from the proposed models and 
their counterparts obtained from the test circuits respectively. 
On the other hand, as the confidence level of the test is 99% 
or α = 0.01 in the other words, c can be given by [13] 

n
c 63.1=                         (43) 

where n denotes the number of samples. 
Before proceed further, it should be mentioned here that 

the verifications of the proposed models have been 
performed by using n = 100 which yields c = 0.163. In the 
upcoming subsection, the verification of the models for the 
triode region will be discussed.  

A. Triode region models verification 
Similarly to [7], a single transistor active resistor has also 

been adopted as the benchmark circuit. This circuit is 
depicted in Fig.2. As the qualitative verification, the 
graphical comparisons for the distributions of per-unit 
change in Id and gds denoted by ∆Id/Id and ∆gds/gds 
respectively are depicted in Fig. 3 and Fig.4 which strong 
agreements between the estimates and their counterparts can 
be observed. Hence, proposed triode region models have 
been qualitatively verified as highly accurate. 

For the quantitative verification, it can be seen by using 
(42) that the resulting KS for x = Id can be found as KS = 
0.15127 and that for x = gds is KS = 0.08524 which are both 
smaller than c = 0.163. This means that the proposed triode 
region models can fit the variations in Id and gds obtained 
from the test circuit with 99% confidence. At this point, the 
triode region models are both qualitatively and quantitatively 
verified as highly accurate. 

+
V g s

-

+ V D D

- V S S

R ( V g s )

 
Fig.2: A single MOS active resistor 

 
Fig.3. Triode region distribution comparison for ∆Id/Id: estimated distribution 

from the model (line), actual distribution from the test circuit (∆). 

 
Fig.4: Triode region distribution comparison for ∆gds/gds: estimated 

distribution from the model (line), actual distribution from the test circuit (∆).  

B. Saturation region models verification 
On the other hand, for the case of the saturation region 

models, a diode connected transistor has been chosen as the 
benchmark circuit for the variation in drain current similarly 
to the saturation region verification proposed in [7] where as 
a single transistor amplifier depicted in Fig.1 has been chosen 
for the variation in transconductance. Such diode connected 
transistor can be depicted in Fig.5. Similarly to the qualitative 
verification of the triode region models, the graphical 
comparisons of the ∆x/x distributions are performed as 
depicted in Fig. 6 and Fig.7 for x = Id and x = gm respectively. 
In this case, strong agreements between the estimates and 
their counterparts can also be observed. At this point, the 
proposed saturation region models have been qualitatively 
verified as highly accurate.  

For the verifications in the quantitative aspect, by (42), the 
resulting KS for x = Id can be found as KS = 0.08943 and that 
for x = gm is KS = 0.14872 which are both smaller than c = 
0.163. This means that the proposed saturation region models 
can also fit the variations in Id and gm obtained from their 
corresponding test circuits with 99% confidence. Here, the 
saturation region models have also been both qualitatively 
and quantitatively verified as highly accurate. 

 
Fig.5: A diode connected transistor 
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Fig.6: Saturation region distribution comparison for ∆Id/Id: estimated PDF 
from the model (line), actual PDF from the test circuit (▲) 

 
Fig.7: Saturation region distribution comparison for ∆gm/gm: estimated PDF 

from the model (line), actual PDF from the test circuit (▲) 

 

IV. CONCLUSIONS 
The complete analytical deterministic/probabilistic 

models of random variations in circuit level parameters for 
any nanoscale MOS transistor, for both triode and saturation 
regions have been proposed by using the up to dated 
nanoscale regime MOS equations [8] as the foundations. The 
proposed models have been verified at the nanoscale regime 
by using the Monte Carlo SPICE simulations and the 
KS-tests. The chosen benchmark circuits are a single 
transistor active resistor for the triode region models along 
with a diode connected transistor and a single transistor 
amplifier for the saturation region models. These models are 
very accurate since they can fit the random variations in 
circuit level parameters obtained from the test circuits with 
99% confidence. Furthermore, they can effectively eliminate 
the gap between the circuit level and physical level design 
and also expected to be the potential mathematical 
foundations for implementating the ECAD cell libraries for 
nanoscale MOS transistors. So, the proposed models are 
obviously efficient for the statistical/variability aware design 

of various nanoscale CMOS analog/mixed signal circuits and 
systems.  
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