
  

  
Abstract—This paper proposes an improved least mean 

kurtosis (LMK) algorithm based on l0-norm cost for enhancing 
the filter performance in a sparse system. The LMK adaptive 
filtering algorithm uses a kurtosis of an estimated error signal 
to improve the filter performance when the noise contamination 
is serious. Due to the influence of l0-norm cost, the proposed 
LMK algorithm ensures a fast convergence rate and a small 
steady-state error in sparse system environment. Simulation 
results verify that the proposed algorithm improves the filter 
performance for sparse system identification. 
 

Index Terms—Adaptive filter, least mean kurtosis algorithm, 
sparse system identification.  
 

I. INTRODUCTION 
Adaptive filters have been widely used as a general tool for 

diverse applications such as echo cancellation, noise 
cancellation, and channel estimation. The least-mean-square 
(LMS) algorithm and normalized least-mean-square (NLMS) 
algorithm are the most well-known adaptive filtering 
algorithms because of their low computational complexity 
and ease of implementation [1]-[2]. Although LMS and 
NLMS have practical advantages, they suffer from the 
performance degradation when the output noise 
contamination occurs. Therefore, the least mean-fourth 
(LMF) algorithm [3] has been proposed to overcome the 
performance degradation due to the output noise 
contamination, and it can actually achieve a faster 
convergence rate than LMS and NLMS when the output 
noise has periodic or uniformly distributed property. The 
LMF uses the expectation of fourth order of an estimated 
error signal. However, if the noise signal is Gaussian 
distributed, the LMF has no benefit compared to LMS and 
NLMS. For this reason, the least mean kurtosis (LMK) 
algorithm [4]-[5] has been introduced to be noise robust in a 
wide range of output noise signals such as impulsive noises, 
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Uniformly distributed noises, Gaussian distributed noises. 
The recent issue of LMF and LMK algorithms is related to 
stability problem because they use the cost functions 
including the high order of error signal. For maintaining the 
stability of these algorithms, a small step size is used 
compared with that of LMS, NLMS. 

Regrettably, because the above-mentioned algorithms do 
not reflect the sparse property of a system, the improvement 
of the filter performance for sparse system identification is 
possible. A sparse system is a special system whose impulse 
response mainly consists of near-zero coefficients and very 
few large coefficients. Although sparse systems have a 
particular property, they exist in many applications such as 
digital TV transmission channel estimation, network echo 
cancellation or underwater channel estimation. Recently, 
several algorithms have been proposed to improve the filter 
performance for identifying a sparse system [6]-[7]. Among 
them, applying the idea of l0-norm constraint to the LMS 
algorithm has been introduced to improve the convergence 
rate of a sparse system [6]. 

This letter proposes an improved LMK algorithm based on 
the l0-norm cost for sparse system identification. We suggest 
a novel cost function including the l0-norm cost to obtain an 
enhanced version of LMK algorithm for a sparse system. The 
proposed LMK algorithm was experimented in a sparse 
system, and its performance was compared with that of 
conventional LMK [4], conventional LMS [1]-[2], and 
l0-norm constraint LMS [6]. 

 

II. BACKGROUND 

A. Basic Principle of Adaptive Filter 

 
 Fig. 1. Block diagram of adaptive filter. 

 
Basically, adaptive filter is to estimate a channel, which 

means that the goal of adaptive filter finds an accurate iw , 
the estimate of the ideal filter coefficient ow . In this paper, 

An Improved Least Mean Kurtosis (LMK) Algorithm for 
Sparse System Identification 

Jin Woo Yoo and PooGyeon Park 

International Journal of Information and Electronics Engineering, Vol. 2, No. 6, November 2012

940DOI: 10.7763/IJIEE.2012.V2.246



  

the proposed LMK algorithm is applied in adaptive filter part 

to update the filter coefficient [ (0),...,ˆ ( 1)]ˆ T
i i iw w n= −w  

recursively. 1 1[ , ,..., ]T
i i i i nu u u− − +=u  that is an input data 

goes to adaptive filter and unknown system at the same time. 
Adaptive filter and unknown system bears the output signals 
ˆ ,i id y , and the measurement noise is added at iy . The 

desired system output signal is the sum of iy  and iv .The 

difference between ˆ
id  and id  is the error signal, which is a 

feedback factor of adaptive filter. In other words, the filter 

coefficient iw  is updated recursively by using the error 
signal. 

B. Sparse System 

 
Fig. 2. Two types of sparse system, (a): general sparse system; (b): clustering 

sparse system. 
 

The impulse response of a sparse system has many 
near-zero coefficients and very few large coefficients. There 
are two types of sparse systems, general sparse system and 
clustering sparse system. As you can see in fig. 2 (a) and (b), 
unlike general sparse system, clustering sparse system has a 
gathering of large filter coefficient. In this paper, our target 
system is general sparse system for identifying the system 
coefficient. 
 

III. IMPROVED LEAST MEAN KURTOSIS ALGORITHM 

A. Conventional Least Mean Kurtosis Algorithm 
The cost function of convention LMK algorithm is as 

follow [4] : 
2 2 4( ) 3 ( ) ( )LMK i iJ i E e E e= −                    (1) 

Through the gradient method, the update equation filter 

coefficient can be derived as 
 

1 { ( )}i i LMKJ i+ = ∇+w w  
2 2

1 )4(3
ii i e i i ie eμ σ+ = + −w w u             (2) 

 
where μ  is the step size, and 2 2( )

ie iE eσ = . 

Since 2
ieσ  is not reachable value, a smoothing factor is 

used for estimating 2( )iE e  as like below: 
 

1

2 2 2 10,
i ie e ieσ ασ α

−
= + <<                     (3) 

 

B. Proposed LMK Based on l0-Norm Cost 
The proposed cost function of an improved LMK 

algorithm is obtained by adding the l0-norm of iw  at the cost 
function of the conventional LMK algorithm, as follow [6]: 
 

2 2 4
0( ) 3 ( |( ) |) ||ip i iJ i E e E e γ= − + w               (4) 

 
where 0||· ||  denotes the l0-norm that means the number of 
nonzero entries, and γ is a parameter to adjust the influence 
of l0-norm cost. 

Through the gradient method, the proposed update 
equation filter coefficient can be derived as 

 

1 ( ){ }i i pJ i+ ∇= +w w  

2 2
1 [4(3 () )]

i
ii i e i i ie eμ σ γ+ = + − −w w u f w           (5) 

 

where ) (0)),...,ˆ ˆ( [ ( ( ( 1))]T
i i if w nf w −f w , μ  is the 

step size, and 2 2( )
ie iE eσ = . 

Like the conventional LMK algorithm, because 2
ieσ  is 

not obtainable value, a smoothing factor is used for 
estimating 2( )iE e  as like below: 

 

1

2 2 2 10,
i ie e ieσ ασ α

−
= + <<                  (6) 

 

C. The description of   function )( if w  
A widely known approximation of l0-norm is as follow: 

 

                       ( )
1

| ( )|
0

0
|| || 1 i

n
w k

i
k

e β
−

−

=

≈ −∑w                  (7) 

 
where the parameter β is a positive integer to determine the 
range of zero-attraction. 

The derivative of (7) with respect to the filter coefficient 
vector can be expressed component-wisely as 
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0|| ||( ( ))
( )
i

i
i

f w k
w k

∂
=

∂

w
 

| ( )|sgn( ( )) 0 .iw k
iw k e k nββ −= ∀ ≤ <   

(8) 
 

For decreasing the computational complexity of (8), the 
first order Taylor series expansion of the exponential 
function (9) is adopted by 

 

| |

11 | |, | |

0, elsewhere.

x x x
e β β

β−

⎧ − ≤⎪≈ ⎨
⎪⎩

                  (9) 

 
Moreover, the sign function sgn(·) is defined as  
 

, 0
| |sgn( )
0, elsewhere.

x x
xx

⎧ ≠⎪= ⎨
⎪⎩

                       (10) 

 
Substituting (9) and (10) into (8), we can present the 

function ( )f ⋅  as 
 

2

2

1, 0

1( ) , 0

0, elsewhere.

x x

f x x x

β β
β

β β
β

⎧ + − ≤ <⎪
⎪
⎪= − < ≤⎨
⎪
⎪
⎪
⎩

               (11) 

 
TABLE I: PSEUDO-CODES OF PROPOSED ALGORITHM 

Given  n, μ , α , β , γ ; 

Initial w = zeros(n,1), f = zeros(n,1); 
 
For  i=1,2,… 
       input u, output d; 

e = d-u’*w; 

f(1:n) = - β *max(0,1- β *abs(w(1:n))).*sign(w(1:n)); 

σ e2= α  *σ e2+e2; 

w= w+ μ *( 4*(3*σ e2-e2)*e*u + γ *f ); 

End 
 

 
Table I shows the pseudo-codes of the proposed LMK 

algorithm. 
 

IV. EXPERIMENTAL RESULTS 
We illustrate the performance of the proposed algorithm 

by performing computer experiments in channel estimation. 

The channel of the unknown system is generated by a moving 
average model with 128 taps (n=128). We assume that the 
adaptive filter and the unknown channel have the same 
number of taps. Moreover we set 120 near-zero filter 
coefficients among 128 taps to realize a general sparse 
system. We also assume that the noise variance, 2

vσ , which 
is known a priory, because it is easy to be estimated. The 
input signal iu  is generated by filtering a white, zero-mean, 
Gaussian random sequence, which denotes the white input. 
The signal-to-noise ratio (SNR) is set to 10dB which is 
defined by 

2 2
10 ( (SNR ) /10 ( ))log i iE y E v=  with T

i i oy = u w . 

The impulsive noise in was generated as i i in k A= , where 

ik  is a Bernoulli process with a probability of success 

[ 1] PriP k = = , and iA  is zero-mean Gaussian noise with 

power 2 2
A yσ σ= . Pr  was set to 0.001, and it means the 

probability of occurrence of impulsive noise. 
The mean square deviation (MSD) is defined as 

MSD ( () ) /T T
i io o o o− −= w w w w w w . The simulation 

results are obtained by ensemble averaging over 100 
independent trials.  

 
Fig. 3. MSD learning curves for white input, SNR=10 dB 

 

 
Fig. 3 shows the MSD learning curves of the conventional 

LMS algorithm [1]-[2], the l0-norm constraint LMS 
algorithm [6], the conventional LMK algorithm [4], and 
proposed LMK algorithm when the system has white input 
signals and low SNR. As you can see, the conventional LMK 
algorithm has a small steady-state error than that of the 
conventional LMS algorithm due to using high order error 
signal. On the other hand, the l0-norm constraint LMS 
algorithm has faster convergence rate and smaller 
steady-state error than those of the conventional LMS owing 
to l0-norm cost in a sparse system. Similarly, the proposed 
LMK algorithm has faster convergence rate and smaller 
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Fig. 4. MSD learning curves for white input when impulsive noises occurs 
with Pr=0.001. 



  

steady-state error than those of the convention LMK 
algorithm in sparse system. Applying l0-norm concept at 
LMS algorithm and LMK algorithm, we can find that the 
l0-norm cost improves the filter performance in sparse system 
identification.  

Fig. 4 shows the MSD learning curves of the conventional 
LMS algorithm, the l0-norm constraint LMS algorithm, the 
conventional LMK algorithm, and proposed LMK algorithm 
when the input signal is white with the impulsive noises 
occurring with Pr =0.001. Despite the impulsive noises are 
added at the system output signal, the proposed LMK 
algorithm attains a fast convergence rate and a small 
steady-state error compared to the other algorithms. 
In fig. 3 and fig 4., the parameters used in simulation are as 
follow: 
 

the conventional LMS algorithm 
  ( μ =0.002),  

the l0-norm constraint LMS algorithm 
( μ =0.002, β =5,κ =0.000008),   
the conventional LMK algorithm  
( μ =0.0001,α =0.8),  
the proposed LMK algorithm  
( μ =0.0001, α =0.8, β =5,γ =0.08). 
 
In the last analysis, the proposed LMK algorithm has faster 

convergence rate and smaller steady-state estimation error 
than the conventional LMS algorithm, the l0-norm constraint 
LMS algorithm, the conventional LMK algorithm when the 
noise contamination is severe. 

 

V. CONCLUSION 
This paper has proposed an improved LMK algorithm for 

sparse system identification. Owing to l0-norm cost, the 
proposed algorithm is to accelerate the convergence of 
near-zero coefficients. The experimental results showed that 
the proposed LMK algorithm accomplished faster 

convergence rate, smaller steady-state estimation errors, and 
lower computational complexity than the existing algorithms.  
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