
  

  
Abstract—In this paper, Slepian-Wolf coding is considered 

for compression of facsimile images. The correlation between 
the image scan lines is exploited at the decoder using 
Slepian-Wolf coding (SWC). The side information is generated 
at the decoder using previously decoded image lines and context 
modelling. A novel weighted context-based iterative decoding of 
low density parity check (LDPC) codes is proposed in addition 
to realizing context-based initialization of log-likelihood ratio 
values in LDPC iterative decoding. On an average, an increase 
of 0.60 in the compression ratio is obtained with the context 
modelling. As the proposed method is based on SWC principles, 
it is inherently error resilient and affords a system with a 
low-complexity encoder. 

 
Index Terms — Facsimile, LDPC, Context-Modelling, 

Nonuniform Source, Slepian-Wolf Coding, DSC. 
 

I. INTRODUCTION 
The Slepian-Wolf (SW) theorem [1] is generally applied to 

uniform binary sources to exploit the correlation between two 
binary sources. Slepian-Wolf coding is also known as 
distributed source coding (DSC), or compression of 
correlated sources with side information. DSC schemes offer 
lot of scope for a flexible trade-off between encoder and 
decoder complexities. The basic theory and principles of 
DSC can be found in [2]. DSC principles are applied to 
remote sensing images and multi-view images to realize a 
low-complexity encoder by exploiting inter-band correlation 
and correlation between the images respectively. However, 
literature on a single-image compression utilizing spatial 
redundancy in accordance with DSC principles is limited. In 
[3], a still image was divided into two sources, and both the 
sources were lossy coded. One source was encoded using a 
low-pass component of wavelet decomposition and the other 
source was encoded using a modulo based binning scheme in 
tune with the DSC principles. The authors of [4] considered 
single-source compression within the DSC framework using ＇
virtually＇  created side information. In [5], the authors 
constructed distributed image compression techniques that 
operate in the pixel domain and exploit the correlation only at 
the decoder for binary text images. 

Recently, wireless facsimiles [6] and portable facsimiles 
have been gaining popularity for different applications. 
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These devices need to consume less power for longer battery 
life.Generally, lossless compression is desirable for facsimile 
(or text) images. Typically, facsimile images contain 
significant redundancy, and they can be treated as 
non-uniform sources with highly biased source distribution 
(around P(X = 0) = p0 = 0.96 [7]). A direct application of 
Slepian-Wolf coding techniques has been investigated in this 
paper. These techniques are based on the compression of a 
non-uniform source under the DSC paradigm. Recently, 
LDPC codes [8] were effectively employed in [9], [10] for 
the compression of nonuniform sources. The authors showed 
that LDPC codes are better suited for non-uniform sources 
and can come close to achieving the Slepian-Wolf bound. 
Hence, in this paper, we explore the use of LDPC codes for 
the compression of facsimile images under the DSC 
paradigm.  

The Consultative Committee on International Telephone 
and Telegraph (CCITT) of the International 
Telecommunications Union (ITU) standardized several 
standards for facsimile compression. Notable standards 
include CCITT group 3 and group 4, more commonly known 
as fax3 and fax4 compression standards, respectively. An 
excellent review of facsimile compression methods and 
standards can be found in [11], [12]. 

Binary image compression standards, JBIG [13] and 
JBIG2 [14] standards achieve higher compression ratios 
using context-based arithmetic coding. On the other hand, 
context modelling is rarely used in DSC. According to 
literature, context modelling in DSC was first introduced in 
[15], where authors reported an overall rate saving of 36%. 
Here, the context information is derived from the bit planes; 
the theory underlying this mechanism is somewhat similar to 
JPEG-2000 context modelling. One drawback of 
context-based arithmetic coders such as those used in JBIG 
and JBIG2 is that they are generally very sensitive to channel 
errors. However, context modelling in DSC is entirely 
performed at the decoder, and hence, it is less susceptible to 
channel noise. 

In this paper, we have combined DSC and context 
modeling at the LDPC decoder. The side information at the 
LDPC decoder is also part of the compressed bit stream. 
Further, we have introduced a novel context-based LDPC 
iterative decoding in addition to realizing context-based 
initialization of log-likelihood ratio (LLR) values in LDPC 
decoding. As the proposed method is based on DSC 
principles, it is inherently error resilient and affords a system 
with a low-complexity encoder. 

This paper is organized as follows. Section II describes the 
different building blocks used in the proposed system. The 
decoding algorithm used for context-based decoding is 
presented in Section III. Details of the simulation 
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experiments conducted and test results are reported in 
Section IV. Finally, Section V presents the conclusion of this 
paper. 

 

II. BUILDING BLOCKS OF ENCODING 
DSC principles are combined with classical facsimile 

image coding techniques to achieve low-complexity 
facsimile image encoding. The different building blocks used 
in the proposed scheme are presented in this section. The 
block diagram of our scheme is shown in Fig. 1. 

 

 
Fig. 1. Block Diagram of Facsimile Image Compression 

A. Variable Rate LDPC Codes 
Each line in an image has a different source distribution, 

and consequently, a different compression ratio. Hence, one 
needs to select a matching LDPC code for each line. This 
necessitates the use of variable rate LDPC codes. To use the 
correct LDPC code for each image line in order to achieve 
lossless decoding, we need to know the simulation threshold 
values (q#) [9] of each code. For this purpose, a set of LDPC 
codes of different code rates are pre-designed, and their 
threshold values are computed. 

Generally, each line in the image is encoded independently 
using LDPC syndrome codes according to (1). 

                                                                            (1) 

where H is a m×n LDPC matrix, x is the input vector (i.e. 
image line) of length n, and s is the syndrome vector of length 
m. 

B. Variable Length Codes 
It may not always be beneficial to code each line with an 

LDPC code because it may not always be possible to find a 
suitable LDPC code from the set of pre-designed codes. This 
may happen when the image lines are very sparsely 
distributed, very uniformly distributed, or when they do not 
have any correlation with the previous line or lines. In these 
situations, a variable length code may be used. Hence, we 
propose to use suitable VLC (may be in conjunction with 
run-length coding) instead of LDPC codes for some image 
lines. 

C. No Coding 
In binary images, such as facsimile and text, the image line 

to be coded may often has the same data as the previous line. 
In these cases, there is no need to encode these lines. The fact 
that the status of this line is the same as that of the previous 
line is stored as header information and communicated to the 
decoder. 

D. Mode Selection 
A mode selection module selects the type of coding to be 

applied to the ith line (present line) on the basis of the (i-1)th 

line (previous line). Normally, LDPC syndrome coding is 
used on the image lines. For certain images lines, other 
modes such as ‘VLC coding’ or ‘No coding’ are selected by 
this module to achieve maximum compression with lossless 
reconstruction. In a simple decoder, the previous line data is 
used as side information, and the present line is decoded 
according to SW principles. When context modelling is used 
in SW decoding, the scenario becomes more complicated; 
this will be discussed in detail in later sections. 

Assuming that the previous line is input to the virtual 
binary symmetric channel for SW decoding, we calculate the 
crossover probability (q) for the present line (i.e. the ith line) 
as follows. 

                       (2) 

where  indicates exclusive-OR operation and A is an 
M£ N facsimile image. If q = 0, i.e. if the data of the present 
line is the same as that of the previous line, then there is no 
data to be coded, and this information is embedded as header 
information. If q ≠ 0, then a suitable LDPC code is selected 
such that the q ≤ q#, and the syndrome length is minimum for 
this code among the codes of the given LDPC code set 
corresponding to a given source distribution p0 for the ith line. 
p0 is given by 

                             (3) 
The VLC coded data bits for the ith line are estimated and 

compared with the syndrome length of the selected LDPC 
code. If the syndrome length is less than the VLC estimation, 
then the line is coded with the LDPC syndrome, else the line 
is coded with VLC codes. If there is no suitable LDPC code  
(which implies that q ≤ q# is not satisfied for any LDPC code 
in the given set) and the VLC code is longer than the image 
line, then the line is transmitted as raw data. 

As described above, the encoding mode is selected on the 
basis of the virtual crossover probability (q) between the 
present line and the previous line and the threshold values (q#) 
of the pre-designed LDPC codes. In evaluating the threshold 
values, the source distribution p0 is fixed, and the threshold 
values are estimated for the pre-designed LDPC codes. The 
threshold values change with p0; higher the p0, higher is the 
threshold value. Obviously, it is not possible to estimate the 
threshold values (using Monte Carlo methods) for every p0 as 
p0 is a continuous variable. To avoid computing the threshold 
values for every p0, we compute the threshold values for one 
particular source distribution, say p0 = 0.9 (one can choose 
any other value for p0 as well) and derive the threshold values 
for other source distributions. This is possible by exploiting a 
favourable property reported in [9], according to which the 
conditional entropy H(X/Y) of source X with side 
information Y is constant for any source distribution when 
the LDPC codes are used optimally i.e. at the threshold 
values of the codes. H(X/Y ) is given by 

 
and 

 
where H(.) is the binary entropy function and px and py are the 
source distributions of X and Y respectively. The threshold 
values for source distribution px = 0.9 are precomputed using 
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Monte Carlo simulations for all the LDPC codes in the code 
set. When an image line is encountered with source 
distribution px 6= 0.9, the threshold values of the LDPC codes 
in the code set can numerically be computed for the given 
source distribution px. This is illustrated in Example 1. 

Example 1: Assume that a threshold value qo
#  is found 

through Monte Carlo simulation at the source distribution,  
px0 = P(X = 0). The conditional entropy H(X/Y ) can be 
expanded as 

                           (4) 
where py0 = P(Y = 0) = px0 (1- qo

# ) + (1 - px0) qo
#. Let q1

# be 
the threshold value at source distribution px1. The following 
equation can be solved for q1

# using the Newton-Raphson 
method. 

                                    (5) 
where py1 = px1 (1 – q1

# ) + (1 - px1) q1
# , and H(X/Y ) is known 

from (4). 
The equality sign is used in (5) assuming that H(X/Y ) is 

constant, with the number of simulated bits tending to 
infinity. 

 

III. DECODING 
As seen in Sec II-D, that the decision to encode an 

imageline using an LDPC syndrome code is based on the 
dataof the previous line i.e. (i-1)th line. Hence, an obviousway 
to decode LDPC coded lines is to assume the (i-1)th line as 
side information and decode the ith line using SWdecoding. 
Such simple decoding may not be adequate to achieve good 
compression. Further, the spatial redundancy in the image is 
not exploited in an effective way. Hence, we propose context 
modelling at the decoder to make use of the spatial 
redundancy. In the following sections, we describe the details 
of context modelling. 

The facsimile image scan lines can be treated as 
nonuniform sources, and hence, decoding strategy presented 
in [9] can be followed. In [9] the authors modified the 
decoding algorithm proposed in [16] for non-uniform sources 
and incorporated the source distribution while initializing the 
edges originating from the variable nodes of bipartite graph 
[17]. They modelled the side information as the output of an 
equivalent BSC with crossover probability equal to q. 

Let xi, yi∈{0, 1} be the realization of the non-uniform 
source X to be compressed with Y as side information. Both xi, 
yi belong to the ith variable node, and the edges emanating 
from the variable node are initialized as 

   (6) 

where q = Pr(X≠Y), p0 = source distribution, Li,0 = initial LLR 
value of ith variable node. 

Here, by including the log( p0/<1−p0>) term in (6), the 
source distribution is taken into account while initializing the 
initial LLRs. 

As seen from (6), the information about the source 
distribution log( p0/<1−p0>) is added to channel information 
((1-2yi) log <1−q>/q ) while initializing the variable nodes. 

A. Context Modelling at Decoder 

In JBIG and JBIG2, context-based coding is performed in 
conjunction with arithmetic coding. In this paper, a similar 
type of context modelling is used to improve the performance 
of the LDPC decoder. The initialization of LLR values in 
LDPC decoding is based on context modelling. The template 
used for context modelling is shown in Fig. 2. We would like 
to emphasize that the template used in this paper is neither an 
optimized one nor have we made any effort to optimize the 
same. We selected this template to explain the overall system 
concept; however, further research is warranted for the 
optimization of the template. The pixels marked ’×’ are used 
for the probability estimation of the pixel to be coded; the 
latter is marked ’?’. In arithmetic coding, all the previous 
lines as well as the pixels to the on left of the pixel to be 
coded are available for context. In case of LDPC decoding, 
the whole block is decoded iteratively, and the final output is 
given by the wholly decoded block. In our case, each decoded 
image line represents the output from the LDPC decoder after 
the image line is successfully decoded or after the maximum 
number of iterations is reached. Hence, we cannot use the 
pixels to the left for context modelling. To overcome this 
difficulty, a novel context-based LDPC decoding is 
introduced in the Sec III-B. 

In this paper, the adaptive context probabilities are derived 
from the previously decoded image lines above the present 
line. The strategy used for adaptive context modelling is 
similar to that used in case of JBIG [13] and is outlined 
below. 

Let Z be an unknown pixel and C be the context. The 
probability of Z can be estimated as follows [12], 

 
where n1 is the number of times the pixel Z is 1 in the context 
of C, n is the number of times the context occurs, Figure 2. 
Template for Context Modelling in LDPC Decoding and 4 is 
a small constant taken as 0.5. The small value of 4 allows the 
process to start (i.e. n1 = n = 0), and as n becomes large, the 
bias caused by 4 becomes negligible. Interested readers may 
find more information and improvements about the adaptive 
context modelling in [11, Chapter 11]. The estimated 
probabilities are utilized for initializing the edges originating 
from the variable nodes of the bipartite graph. Now, the Li,0 
in (6) can be directly derived from the context probabilities as 

               (7) 

 

 
Fig. 2. Template for Context Modelling in LDPC Decoding 

 
One can note that in (7), the initial LLR values are directly 

obtained from the context probabilities, whereas in (6), the 
initial LLR is derived from the crossover probability and 
source distribution. This implies that information about the 
crossover probability (q) and source distribution (p0) is not 
required in context-based decoding. 

B. Context-based LDPC Decoding 
As already mentioned in Sec III-A, the pixels to the left 

side of Z cannot be used for context modelling as the whole 
image line is decoded simultaneously in LDPC syndrome 
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decoding.  We have introduced a novel context-based LDPC 
iterative decoding to overcome this problem. The template 
for context-based LDPC decoding is shown in Fig. 3. Here, 
pixels to both the left and right of Z (= ?) are available for 
context modelling, as the entire image line is decoded 
simultaneously. Now the key issue that remains is the 
utilization of the context. In the initial iterations, soft 
information about the pixel values is not reliable and cannot 
be used. After the final iteration, the output is eventually 
obtained. Hence, we have incorporated weighted context 
information in LDPC iterative decoding. As the number of 
iterations increases, more weight is given to the context 
information derived from the pixels to both the left and right. 
To this end, a separate record of context probabilities is 
maintained with respect to the context template shown in Fig. 
3. The context probabilities are derived from the previously 
decoded image lines as described in Sec III-A. 

In context-based LDPC decoding, after every iteration, a 
hard decision has to be taken on the image line (LDPC 
codeword) to form the context. The LLR values are estimated 
from this context, and the initial LLR values are updated for 
every iteration as follows. 

 
 

 
Fig. 3. Template for context used in LDPC decoding 

where t is the iteration number and T is the maximum number 
of iterations allowed. Here, Z and C refer to the pixel to be 
coded (marked ’?’) and the context with respect to the 
template in Fig. 3, respectively. 
 

IV. EXPERIMENTAL SETUP AND SIMULATION RESULTS 
In this section, we provide additional details, practical 

aspects, and realization of the building blocks described in 
Sec.II. The CCITT test images are used for testing the 
algorithm and for comparison purposes. The test images are 
of size 2376 × 1728 and are available online [18]. The 
thumbnail images of CCITT test images are shown in Fig. 4. 

A. Variable Rate LDPC Codes 
Different LDPC matrices (codes) are designed using 

variable number of rows and fixed number of columns; the 
number of columns is equal to 1728, which is equal to the 
image width. The (3, p) regular variable rate LDPC matrices 
are constructed using the PEG algorithm [19]. For simulation 
purposes, we have designed 61 LDPC codes for the LDPC 
code set. This accounts to 6 bits per image line in the header, 
which transmits the mode selection information. The ’0’ 
mode for q = 0 (i.e. when the present image line is the same as 
the previous one); 1 – 61, for different LDPC codes; 62, for 
VLC coded image line; and 63, for raw data. The LDPC 
codes are constructed using 96 – 1056 number of rows; the 
number of rows increases in steps of 16. Therefore, the bit 
rates range from 0.056 – 0.61 bits/pixel. The computed 
simulation threshold (q#) values range from 0.000579 for the 

(1728, 1632) LDPC code to 0.294 for the (1728, 672) LDPC 
code. It is observed that the inbetween values increase nearly 
in a parabolic fashion. For simplicity, we have selected 
regular LDPC codes with fixed step size. However, there is 
good scope to optimize LDPC codes in various other ways. 
Optimization may be addressed at several fronts; however, it 
is left for future research. 

Numerous variable rate LDPC codes have been presented 
in literature, for example in [20], [21], [22], [23], [24].  
Particularly, the variable rate LDPC code presented in [21]  is 
very attractive in the present context because it presents a 
system architecture for LDPC codes that allows the dynamic 
switching of LDPC codes within the encoder and decoder 
without any hardware modifications. Further, it supports the 
codes that span a wide range of lengths and code rates, 
without compromising on the coding efficiency. 

B. Variable Length Codes 
For variable length coding, the well-proven modified 

Huffman (MH) codes [11] used in CCITT group 3 facsimile 
standard were followed. The MH code tables may be found in 
[25]. Better and more efficient VLCs will be explored in 
future research 

C. Mode Selection for Context-based Decoding 
The mode selection algorithm described in Sec II-D is 

suitable when the previous line is considered as side 
information and the present line is decoded by LDPC 
syndrome decoding. Context modelling is not considered in 
such mode selection. Further, the LDPC codes are analyzed 
according to the principles of Slepian-Wolf coding, i.e. their 
threshold values are determined using synthetically generated 
side information at a given source distribution. Hence, 
selecting an LDPC code with context modelling is difficult. 

Intuitively, we assume that context-based decoding should 
improve the compression performance. To improve the 
compression performance, one should select an LDPC code 
with a high threshold value, while keeping the code rate high  
(resulting in a low bit rate). This is possible when the 
nonuniformity of source distribution is high. This indicates 
that context modelling effectively increases the source 
distribution. With this intuitive observation, we define an 
overloading factor to account for the context modelling at the 
decoder. The overloading factor Fij is used in the following 
equation to update the virtual source distribution pCx of 
source X, that matches the context modelling. 

pC
x = px + Fij(1 - px)         0 ≤ Fij ≤ 1 

where i, j 2 f0, 1g and are defined as follows 

 

 
The mode selection module selects an LDPC code 

assuming the virtual source distribution to be pC
x. Because 

pC
x is higher than px, a high rate LDPC code with high 

threshold is selected by the mode selection algorithm. The 
value of Fij depends on the performance gain expected from 
context modelling. 
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(a) CCITT 1                                (b) CCITT 2                                  (c) CCITT 3                               (d) CCITT 4 

       
(e) CCITT 5                              (f) CCITT 6                                   (g) CCITT 7                                  (h) CCITT 8 

Fig. 4. CCITT test images 
 
D. Simulation Results 
The proposed algorithm is applied to the CCITT images 

with each image is encoded for different overloading factors 
and decoded. The overloading factors listed in Table I 
represent the highest overloading factor for which near 
lossless decoding is achieved. The first column lists the 
compression ratios obtained when the overloading factor is 
zero and no context model was used at the decoder. 
Obviously, no overloading can be used when context 
modelling at the decoder is disabled. On an average, an 
increase of 0.60 in the compression ratio is obtained with 
context modeling(combined context-based LLR initialization 
and context-based LDPC decoding) as compared to that 
obtained with no context. Context-based LDPC iterative 
decoding itself increases the compression ratio by 0.42 in 
comparison with no context. 

The proposed algorithm outperforms CCITT group 3-1D  
(fax 3-1D) coding by a convincing margin. With respect to 
fax 3-2D, this algorithm is sometimes superior and some 

TABLE I: COMPRESSION RATIOS FOR CCITT TEST IMAGES AND 
CORRESPONDING OVERLOADING FACTORS 

 
1CR with F00 = 0.00 2BER > 10−5 

times inferior, resulting in a mixed performance. For images, 
a BER of 10−5 or less can be considered as a near lossless 
reconstruction. The BER is computed as follows. 

 
where bA is the reconstructed image. In some cases, the BER 
does not fall below 10−5 even when the overloading factor is 
zero. This condition is indicated with a footnote in Table I 
and considered as lossy compression. However, the 
reconstructed image appears to be visually lossless. It is 
observed that this situation occurs whenever there is dense 
text in the image. Such situations will be analyzed in our 
future research. 

TABLE II: COMPARISON RESULTS OF THE PROPOSED ALGORITHM 

 
 

V.   CONCLUSION 
We investigated the compression of facsimile images 

under the DSC paradigm. It is a single source near-lossless 
image compression with side information (for Slepian-Wolf 
decoding) derived from the previously decoded image lines. 
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The side information was generated using context-based 
modeling at the decoder. Further, we have introduced a novel 
weighted context-based LDPC iterative decoding in addition 
to realizing context-based initialization of log-likelihood 
ratio (LLR) values in LDPC decoding. The combination of 
these techniques improved the compression performance 
considerably. On an average, an increase of 0.60 in the 
compression ratio is obtained with context modelling. The 
performance of the overall system is extremely compatible 
with fax3 (CCITT group 3) compression. As the proposed 
method is based on DSC principles, it is inherently error 
resilient and affords a system with a low-complexity encoder. 
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