
  
Abstract—this paper is explained about elliptic curve 

exponentiation over prime field ( ࢖ࡲ ) which are Affine, 
projective, Jacobian, Chunnovsky-Jacobian and the modified 
Jacobian coordinate systems that how to implement elliptic 
curve exponentiation over prime field (࢖ࡲ) into Elliptic Curve 
(EC) encryption and digital signature in the global smart cards. 
These coordinate systems are explained the underlying 
arithmetic operations with formulae and geometrical diagrams. 
Point addition and doubling of coordinate systems over prime 
field ࢖ࡲ are mentioned for every coordinate system.  Thus, we 
proposed mixed coordinate systems over prime field (࢖ࡲ) in the 
EC encryption and digital signature of the global smart cards.  
   

Index Terms—Elliptic curve, finite field, exponentiation, 
coordinate system, DLP, global smart card.   

 

I. INTRODUCTION 
Elliptic curve cryptosystem is proposed by Koblitz [1] 

and Miller [2] which is public key cryptosystem that it can 
be constructed on the group of points of an elliptic curve 
over a finite field instead of finite field. Elliptic curves based 
on the difficulty of the Elliptic Curve Discrete Logarithm 
Problem (ECDLP).  

ECC has much more benefits in public key cryptosystems 
which are small key length, lower consumption power, 
faster computation, and small bandwidth [3], [4]. For 
example, for encryption, 160 bit ECC is believed to provide 
about the same level of security as 1024 bit RSA. Mainly, 
ECC can be used to provide both an encryption and a digital 
signature scheme; they are restricted memory devices such 
as smart cards, PDS (Personal Digital Assistant), cell phone, 
and pagers.   

Elliptic curve exponentiation based on coordinate system 
which [5], [6], [7] is Affine, projective, Jacobian, 
Chudnovsky-Jacobian and modified Jacobian coordinate 
systems. Every coordinate system has own the speed of 
additions and doublings that computation time is the 
different. On the other hand, these coordinate systems were 
mixed to enhance coordinate systems in ECC that which 
involves five different kinds of coordinate systems 
(represented by the symbols ܣ, ܲ, ,ܬ ,௖ܬ      .(௠ܬ ݀݊ܽ 

 Main contribution of this paper is to implement elliptic 
curve exponentiation over prime field ( ௣ܨ ) to compute 
arithmetic operation in elliptic curve encryption and digital 
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signature of global smart cards. Therefore, mixed coordinate 
system will be implemented in the global smart cards. 
Eventually, this proposed system of global smart card will 
face the high efficiency and performance.    

 

II. ELLIPTIC CURVE DISCRETE LOGARITHM PROBLEM 
(ECDLP) 

The foundation of every cryptosystem is a hard 
mathematical problem that is computationally infeasible to 
solve. The discrete logarithm problem is the basis for the 
security of many cryptosystems including the Elliptic Curve 
Cryptosystem. More specifically, the ECC relies upon the 
difficulty of the Elliptic Curve Discrete Logarithm Problem 
(ECDLP). The ECDLP is districted over the points of an 
elliptic curve [8],[9]. Since the ECDLP appears to be 
significantly harder than the DLP (Discrete Logarithm 
Problem), the strength-per-key bit is substantiality greater in 
elliptic curve systems than in conventional discrete 
logarithm system [10], [11].  

Let ܧ be an elliptic curve defined over a finite field ܭ ൌ
௤ܨ

௡  (1).  The ECDLP in ܧሺܭሻ  is the following: given ܧ 
that ܲ א ݎ ,ሻܭሺܧ ൌord (ܲ) and ܴ א  find the integers ,ۄܲۃ
݊ א ሾ0, ݌ െ 1ሿ  such  ܴ ൌ ݊ܲ . An elliptic curve  ܧ  over a 
field ܭ is of the form [12].  

ଶݕ ൅ ܽଵݕݔ ൅ ܽଷݕ ൌ ଷݔ ൅ ܽଶݔଶ ൅ ܽସݔ ൅ ܽ଺  
       ሺܽଵ, ܽଶ, ܽଷ, ܽସ, ܽ଺ א  ሻܭ

(1) 

This (1.1) equation is called a Weierstrass equation. 
Elliptic curve over  ܭ  can be simplified considerably by 
applying acceptable change of variables that the underlined 
field ܭ  is characteristic different from 2 and 3 or 
characteristic equal to 2 or 3. If the characteristic of ܭ ് 2,3 
is available that admissible change of variables 

ሺݔ, ሻݕ ՜ ሺ௫ିଷ௔భ
మିଵଶ௔మ
ଷ଺

, ௬ିଷ௔భ௫
ଶଵ଺

െ ௔భ
యାସ௔భ௔మିଵଶ௔య

ଶସ
) 

transforms ܧ to the curve 

ଶݕ ൌ ଷݔ ൅ ݔܽ ൅ ܾ                                 (1.2) 

where ܽ, ܾ א  The discriminate of the curve is .ܭ

∆ൌ 4ܽଷ ൅ 27ܾଶ ൌ 0                               (1.3) 

A. Finite Field 
Finite field consists of a finite set of elements ܨ together 

with two binary operations on ܨ  such as addition and 
multiplication binary operation, the satisfy arithmetic 
properties. Finite field is called Galois Field (GF (so named 
in honor of Evariste Galois)) in some sources [6], [9], [10], 
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[11]. The order of the finite field is the number of elements 
in the field. Finite field is based on ݍ and is denoted ܨ௤. If 
ݍ ൌ  is a prime and ݉ is a positive integer, then ݌ ௠ where݌
݌  is called the characteristic of ܨ௤  and ݉  is called the 
extension degree of ܨ௤ . As a result of process, finite field 
occur prime field over ܧ ሺܭሻ that it belongs to ݌ܨ or ܨܩሺ݌ሻ 
and (1.2) equation based on prime finite field  ݌ܨ over ܧ. 

B. Elliptic Curve over Prime Field ܨ௣ 
Let ܨ௣  be a prime finite field so that ݌ is an odd prime 

number, and let ܽ, ܾ א  ௣  satisfy and elliptic curveܨ
discriminate receive (1.3) equation. Then an elliptic curve ܧ 
over ܨ௣ defined by the parameters ܽ, ܾ א ௣ܨ  consists of the 
set of solutions or points  ܲ ൌ ሺݔ, ሻݕ  for  ݔ, ݕ א ௣ܨ  to the 
equation [4], [6], [10], [11]: 

Equation (1.2) is called the defining equation of an 
elliptic curve ௣ ሻܨሺ ܧ  . An elliptic curve ܧ ሺܨ௣ ሻ  is given  
ܲ ൌ ሺݔ௣, ௣ݔ ௣ሻ point thatݕ  is the ݔ – coordinate of  ܲ, ݕ௣  is 
the ݕ - coordinate of  ܲ. Elliptic curve over finite ܨ௣ is based 
on Abelian group structure which is identity, negative, point 
addition and point doubling.  

• Identity. ܲ ൫ݔ௣, ௣൯ݕ ൅ ∞ ൌ ∞ ൅ ܲ൫ݔ௣,  ௣൯ , which isݕ
 ܲ א  ௣ሻܨሺܧ

• Negatives. ܲ ൌ ൫ݔ௣, ௣൯ݕ א ௣ሻܨሺܧ  that   ൫ݔ௣, ௣൯ݕ ൅
൫ݔ௣, െݕ௣൯ ൌ ∞.  As the result of equation ൫ݔ௣, െݕ௣൯  
is denoted by – ܲ and – ܲ is called the negative of  ܲ, 
indeed – ܲ belongs to E (ܨ௣) and – ∞ ൌ ∞. 

• Point addition. Point addition of elliptic curve over E 
( ௣ܨ ) is called the chord-and-tangent rule that Let 

ଵܲ ൌ ሺݔଵ, ଵሻݕ א ௣ሻܨሺܧ  and  ଶܲ ൌ ሺݔଶ, ଶሻݕ א ௣ሻܨሺܧ , 
where   ଵܲ ് േ ଶܲ  so ଵݔ  ് ଶݔ . These two points 
addition are  ଵܲ ൅ ଶܲ ൌ ܳ  ሺሺݔଵ, ଵሻݕ ൅ ሺݔଶ, ଶሻݕ ൌ
ሺݔଷ,  ଷሻሻ: whereݕ

ߛ ൌ ௬భି௬మ
௫మି௫భ

ሺ݉݌ ݀݋ሻ                          (1.4) 

ଷݔ ൌ ଶߛ െ ଵݔ െ  ሻ                     (1.5)݌ ݀݋ଶ ሺ݉ݔ

ଷݕ  ൌ ଵݔሺߛ െ ଷሻݔ െ  ሻ                   (1.6)݌ ݀݋ଵሺ݉ݕ

 
Thus, in Fig. 1 is portrayed geometric addition of elliptic 

curve cryptography over prime field ܨ௣.  

 
Fig. 1. Point addition in  ܧሺܨ௣ሻ 

 
• Point doubling. ଵܲ ൌ ሺݔଵ, ଵሻ and  ଶܲݕ ൌ ሺݔଶ,  ଶሻݕ

points of elliptic curve finite field over  ܨ௣ are equal 

to each other in  fig.2 that  ଵܲ ൌ ଶܲ but  ଵܲ ് ଶܲ. Due 
to occur  2 ଵܲሺݔଵ, ଵሻݕ ൌ ܳ ሺݔଷ,  ଷሻ: whereݕ

ߛ ൌ ଷ௫భ
మା௔

ଶ௬భ
 ሺ݉݌ ݀݋ሻ                     (1.7) 

ଷݔ ൌ ଶߛ െ  ሻ                  (1.8)݌ ݀݋ଵሺ݉ݔ2
ଷݕ ൌ ଵݔሺߛ െ ଷሻݔ െ  ሻ            (1.9)݌ ݀݋ଵ ሺ݉ݕ

 

Fig. 2.  Point doubling in  ܧሺܨ௣ሻ 

 
Fig. 2 is portrayed point doubling of Elliptic Curve 

Cryptography over prime field ܨ௣. 
 

III. ELLIPTIC CURVE EXPONENTIATION  
Elliptic curve exponentiation computes by repeating 

additions and doublings that the repeated number of 
additions is reduced by a suitable algorithm but the repeated 
number of doublings is not reduced especially in the case of 
exponentiation for a random point and main purpose is to 
reduce minimized the total computation time [5], [7], [12]. 
Elliptic curve exponentiations are classified in coordinate 
systems 

A. Point Coordinate Systems in The Prime Field ܨ௣ 
Point coordinate systems are the one of the most crucial 

decisions to implement elliptic curve cryptosystem over 
prime field ܨ௣. The point coordinate systems have been used 
for addition and doubling of points on the elliptic curve 
determines the efficiency of these routines as well as for 
basic cryptographic operation and scalar multiplication. 
Moreover, Fig. 1 and Fig. 2 is depicted two points of 
coordinate systems which is addition and doubling.  
Coordinate systems and computation times of elliptic curve 
exponentiation is explained in Table I that these coordinate 
systems and their computation times are as following which 
are Affine, Projective, Jacobian, Chudnovsky Jacobian, and 
Modified Jacobian coordinate systems as well as they are 
explained by one by with mathematic notes in subsections 
[5], [7]. 

 
TABLE I:  POINT COORDINATE SYSTEMS OF COMPUTATION TIME 

 

Point 
Coordinate 

Systems 

Computation Time 

Point coordinate formulae in 
point addition 

Point coordinate 
formulae in point 

doubling 
Affine ݐሺܣ ൅ ሻܣ ൌ ܫ ൅ ܯ2 ൅ ሻܣሺ2ݐ ܵ ൌ ܫ ൅ ܯ2 ൅ 2ܵ

Projective  ݐሺܲ ൅ ܲሻ ൌ ܯ12 ൅ ሺ2ܲሻݐ 2ܵ ൌ ܯ7 ൅ 5ܵ
Jacobian ݐሺܬ ൅ ሻܬ ൌ ܯ12 ൅ ሻܬሺ2ݐ 4ܵ ൌ ܯ4 ൅ 6ܵ

Chudnovsky 
Jacobian  ݐሺܬ௖ ൅ ௖ሻܬ ൌ ܯ11 ൅ ௖ሻܬሺݐ 3ܵ ൌ ܯ5 ൅ 6ܵ 

Modified 
Jacobian  ݐሺܬ௠ ൅ ௠ሻܬ ൌ ܯ13 ൅ ௠ሻܬሺݐ 6ܵ ൌ ܯ4 ൅ 4ܵ 
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Fig. 3. proposed implementation in the global smart cards 

 
1) Affine coordinate systems  
Affine coordinate systems are the simplest to understand 

because of use the communication between in two parties 
that they require the lowest bandwidth.  However, this 
coordinate system is different in the field arithmetic 
operations. For example: modular inversion requires being 
inefficient in adding and doubling points of the affine 
coordinate system [5]. Moreover, affine coordinate requires 
a division in every addition and every doubling but requires 
fewer multiplications than projective coordinate [13].  As a 
brief explanation, affine coordinate is disadvantage with 
modular inversion arithmetic operation.  

Affine coordinate system is based on elliptic curve ܧ over 
prime field ܨ௣  as (1) equation that ݌  ൐ 3, ݌ ് 2, 3 , and 
ܽ, ܾ א ௣ܨ  have to be satisfied, thus Elliptic Curve ܧ 
determined is (1.3) and (1.2) equation happen. Both point 
addition and doubling formulas of coordinate points are 
based on as following points:  ଵܲ ൌ ሺݔଵ, ଵሻ, ଶܲݕ ൌ ሺݔଶ,  ଶሻݕ
and ܴ ൌ ଵܲ ൅ ଶܲ ൌ ሺݔଷ, ଷሻݕ . These points are depicted in 
the fig.1 and fig.2  that fig.1 is addition points in the 
coordinate system and fig.2 is doubling points in the 
coordinate system which is ଵܲ ൌ ଶܲ. In below, addition and 
doubling formulas in affine coordinates are noted that these 
formulas are the same as regular ܧሺܨ௣ሻ.  

• Elliptic curve addition formulas in affine coordinates 
ሺ ଵܲ ് േ ଶܲሻ 

ଷݔ ൌ ଶߛ െ ଵݔ െ  ଶ                            (2)ݔ
ଷݕ ൌ ଵݔሺߛ െ ଷሻݔ െ  ଵ                     (2.1)ݕ

ߛ ൌ ௬భି௬మ
௫మି௫భ

                               (2.2) 

• Elliptic curve doubling formulas in doubling 
coordinates ሺ ଵܲ ൌ ଶܲሻ 

ଷݔ ൌ ଶߛ െ  ଵ                           (2.3)ݔ2
ଷݕ ൌ ଵݔሺߛ െ ଷሻݔ െ  ଵ                     (2.4)ݕ

ߛ ൌ ଷ௫భ
మା௔

ଶ௬భ
                               (2.5) 

Affine coordinate system is called in table 1 as  ܣ letter, 
addition and doubling points in its coordinate system are 
noted computation time.  The first equation ሺݐሺܣ ൅ ሻܣ ൌ
ܫ ൅ ܯ2 ൅ ܵሻ is addition points of affine coordinate system 
which is Inversion, Multiplication and Squaring. The second 
equation   ሺݐሺ2ܣሻ ൌ ܫ ൅ ܯ2 ൅ 2ܵ ) is doubling points of 
affine coordinate system and is the same as addition point 
only two points are similar as an above.   

2) Projective coordinate systems 
Projective coordinate systems are also used ݔ and ݕ axis 

as the same as affine coordinate systems, only instead of 
,ݔ axis are used ௫ ݕ ݀݊ܽ

௭
  and  ௬

௭
  and main equation of 

projective coordinate system is as follows. 

௣: ܻଶܼܧ ൌ ܺଷ ൅ ܼܽܺଶ ൅ ܾܼଷ                (2.6) 

Let  ଵܲ ൌ ሺ ଵܺ, ଵܻ, ܼଵሻ , ଶܲ ൌ ሺܺଶ, ଶܻ, ܼଶሻ  and  ଵܲ ൅ ଶܲ ൌ
ܴ ൌ ሺܺଷ, ଷܻ, ܼଷሻ . Thus, projective coordinate systems 
involve addition and doubling formulas in the elliptic curve 
exponentiation. In deed to base (2.6) equation that every 
point coordinates has own formulas [2, 7]. They are: 

• Elliptic curve addition formulas in projective 
coordinates  ሺ ଵܲ ് േ ଶܲሻ 

ܺଷ ൌ ,ܣݒ ଷܻ ൌ ଶݒሺݑ
ଵܼܺଶ െ ሻܣ െ ଷݒ

ଵܻ, ܼଷ ൌ       ଷܼଵܼଶݒ
(2.7) 

These equations are ݒ,   :which is equal as follows ܣ ݀݊ܽ ݑ

ݑ ൌ ଶܻܼଵ െ ଵܻܼଶ,  ݒ ൌ ܺଶܼଵ െ ଵܼܺଶ,  ܣ ൌ ଶܼଵܼଶݑ െ
ଷݒ െ ଶݒ2

ଵܼܺଶ                                    (2.8) 

• Elliptic curve doubling formulas in projective 
coordinates ሺܴ ൌ 2ܲሻ 

ܺଷ ൌ ଷܻ ,ݏ2݄ ൌ ܤሺ4ݓ െ ݄ሻ െ 8 ଵܻ
ଶݏଶ,  ܼଷ ൌ  ଷ    (2.9)ݏ8

 

These equations are ݓ, ,ݏ ܽ݊݀ ݄ which is equal as follows: 
ݓ  ൌ ܼܽଵ

ଶ ൅ 3 ଵܺ
ଶ, ݏ ൌ ଵܻܼଵ,  ܤ ൌ ଵܺ ଵܻݏ, ݄ ൌ ଶݓ െ       ܤ8

(3) 

The computation times of projective coordinate systems 
are  
ሺܲݐ ൅ ܲሻ ൌ ܯ12 ൅ 2ܵ  and ݐሺ2ܲሻ ൌ ܯ7 ൅ 5ܵ  formulas 
depicted in table 1 that these two formulas are based on (2.7) 
and (2.7) equations, ܲ means projective coordinates.  

3) Jacobian czoordinate systems 
Jacobian coordinate systems are based on affine 

coordinate formulas that ݔ ൌ ܺ ܼଶ⁄  and ݕ ൌ ܻ ܼଷ⁄  is equal 
and equation [2], [7]: 
 

௝: ܻଶܧ ൌ ܺଷ ൅ ܼܽܺସ ൅ ܾܼ଺                 (3.1) 
 

The addition formulas in the Jacobian coordinates are the 
following. Let  ଵܲ ൌ ሺ ଵܺ, ଵܻ, ܼଵሻ , ଶܲ ൌ ሺܺଶ, ଶܻ, ܼଶሻ  and  ଵܲ ൅

ଶܲ ൌ ܴ ൌ ሺܺଷ, ଷܻ, ܼଷሻ. 
• Elliptic curve addition formulas in Jacobian 

coordinates ( ଵܲ ് േ ଶܲ) 

ܺଷ ൌ െܪଷ െ 2 ଵܷܪଶ ൅  ଶ                   (3.2)ݎ

ଷܻ ൌ െ ଵܵܪଷ ൅ ሺݎ ଵܷܪଶ െ ܺଷሻ                (3.3) 

ܼଷ ൌ ܼଵܼଶ(3.4)                              ܪ 

These equations are Jacobian coordinate’s formulas that 
ଵܷ, ܷଶ, ଵܵ, ܵଶ, ,ܪ  :are as following formulas  ݎ ݀݊ܽ

 

ଵܷ ൌ ଵܼܺଶ
ଶ,  ܷଶ ൌ ܺଶܼଵ

ଶ,  ଵܵ ൌ ଵܻܼଶ
ଷ,  ܵଶ ൌ ଶܻܼଵ

ଷ,  ܪ ൌ ܷଶ െ
ଵܷ, ݎ ൌ ܵଶ െ ଵܵ                         (3.5) 
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• Elliptic curve doubling formulas in Jacobian 
coordinates  (ܴ ൌ 2ܲ) 

ܺଷ ൌ ܶ                                  (3.6) 
ଷܻ ൌ െ8 ଵܻ

ସ ൅ ሺܵܯ െ ܶሻ                   (3.7) 
ܼଷ ൌ 2 ଵܻܼଵ                                  (3.8) 

These three latter ܵ, ,ܯ ܽ݊݀ ܶ  are equal as following 
equations: 

ܵ ൌ 4 ଵܺ ଵܻ
ଶ, ܯ ൌ 3 ଵܺ

ଶ ൅ ܼܽଵ
ସ, ܶ ൌ െ2ܵ ൅  ଶ   (3.9)ܯ

The computation times of addition and doubling in 
Jacobian coordinates are mentioned in table 1 that addition 
is   ݐሺܬ ൅ ሻܬ ൌ ܯ12 ൅ 4ܵ and doubling is ݐሺ2ܬሻ ൌ ܯ4 ൅ 6ܵ. 
As a result of Jacobian coordinates, this coordinates offer a 
faster doubling and a slower addition [8].  

4) Chudnovsky-Jacobian Coordinate Systems 
The Chudnovsky Jacobian coordinate systems are based 

on Jacobian coordinates system which is denoted by ܬ௖ that 
(3.1) formula is the same for these coordinate systems. 
Let  ଵܲ ൌ ሺ ଵܺ, ଵܻ, ܼଵ, ܼଵ

ଶ, ܼଵ
ଷሻ , ଶܲ ൌ ሺܺଶ, ଶܻ, ܼଶ, ܼଶ

ଶ, ܼଶ
ଷሻ 

and ଵܲ ൅ ଶܲ ൌ ܴ ൌ ሺܺଷ, ଷܻ, ܼଷ, ܼଷ
ଶ, ܼଷ

ଷሻ.  
• Elliptic curve addition formulas in Chudnovsky 

Jacobian coordinates  ሺ ଵܲ ് േ ଶܲ ).These coordinate 
systems are the same as (3.2), (3.3) and (3.4) but in 
below two equations are the different.  

ܼଷ
ଶ ൌ ܼଷ

ଶ                                       (4) 
ܼଷ

ଷ ൌ ܼଷ
ଷ                                    (4.1)   

Therefore, these ଵܷ, ܷଶ, ଵܵ, ܵଶ, ,ܪ  equations are the  ݎ ݀݊ܽ
same as Jacobian coordinate systems  

• Elliptic curve doubling formulas in Chudnovsky 
Jacobian coordinates (ܴ ൌ 2ܲ). Doubling formulas 
are also the unchanged they are (3.6), (3.7), (3.8), 
and (3.9) equations and (4), (4.1) equation is 
addition formulas of Chudnovsky Jacobian 
coordinates. However, the computation times are the 
different which is portrayed in table 1 that point 
addition is  
௖ܬሺݐ ൅ ௖ሻܬ ൌ ܯ11 ൅ 3ܵ  and for point doubling 
is ݐሺܬ௖ሻ ൌ ܯ5 ൅ 6ܵ. 

5) The Modified Jacobian Coordinates 
The modified Jacobian coordinates are based on the 

Jacobian coordinates ( ܬ ) which is faster doublings than 
Affine, projective, Jacobian-Chudnovsky and Jacobian 
coordinate systems [5], [6]. They are represented internally 
the Jacobian coordinates as a quadruple ሺܺ, ܻ, ܼ, ܼܽସ) that 
this is called modified Jacobian coordinates and is denoted it 
by ௠ܬ  . Let  ଵܲ ൌ ሺ ଵܺ, ଵܻ, ܼଵ, ܼܽଵ

ସሻ , ଶܲ ൌ ሺܺଶ, ଶܻ, ܼଶ, ܼܽଶ
ସሻ 

and ଵܲ ൅ ଶܲ ൌ ܴ ൌ ሺܺଷ, ଷܻ, ܼଷ, ܼܽଷ
ସሻ.  

• Elliptic curve addition formulas in the modified 
Jacobian coordinates ሺ ଵܲ ് േ ଶܲ ). The modified 
Jacobian coordinates of addition formulae are 
equivalent as (3.1), (3.2) and (3.3), but last one 
equation is different, it is:  

ܼܽଷ
ସ ൌ ܼܽଷ

ସ                                    (4.2) 

Moreover, ଵܷ, ܷଶ, ଵܵ, ܵଶ, ,ܪ   are the same as (3.5)  ݎ ݀݊ܽ
• Elliptic curve doubling formulas in the modified 

Jacobian coordinates (ܴ ൌ 2ܲ) 

ܺ3 ൌ ܶ, ܻ3 ൌ ሺܵܯ െ ܶሻ െ ܷ,  ܼ3 ൌ 2ܻ1ܼ1, ܼܽ3
4 ൌ

2ܷሺܼܽ1
4ሻ  (4.1) 

where   

ܵ ൌ 4 ଵܺ ଵܻ
ଶ, ܷ ൌ 8 ଵܻ

ସ, ܯ ൌ 3 ଵܺ
ଶ ൅ ሺܼܽଵ

ସሻ, ܶ ൌ െ2ܵ ൅                   ଶܯ
(4.3) 

 

The modified Jacobian Coordinates are also computation 
time account of arithmetic operation in prime field ݌ܨ over 
elliptic curve ܧ that addition and doubling formulae which 
are mentioned in table 1 that for addition is ݐሺܬ௠ ൅ ௠ሻܬ ൌ
ܯ13 ൅ 6ܵ and for doubling is ݐሺ2ܬ௠ሻ ൌ ܯ4 ൅ 4ܵ. 

 

IV.  PROPOSED EC EXPONENTIATION IN GLOBAL SMART 
CARDS 

Proposed elliptic curve exponentiation of global smart 
cards is portrayed in fig.3 which is based on ECDLP. 
ECDLP includes ECC which is computed in coordinate 
systems. These coordinate systems represent addition and 
doubling points that basically five coordinate systems occurs 
which are Affine, projective, Jacobian, Chudnovsky-
Jacobian and the modified Jacobian coordinate systems. The 
computation times of different coordinate systems are not 
same as they involve different addition and doubling point 
times. Moreover, they would have the different computation 
times when they are implemented in the global smart cards.  

In [13], researchers had proposed to implement projective 
coordinate systems in smart cards that efficiency was much 
benefit. The goal of mixed coordinate systems will be 
improved performance of computation times such as point 
addition and point doubling. Consequently, cross mixed 
coordinate systems EC encryption and digital signature will 
be done high performance in the global smart cards.  

 

V. FUTURE WORK 
Future work of the elliptic curve exponentiation over 

prime field ܨ p will be improved to compute coordinate 
systems in EC encryption and digital signature of the global 
smart cards. In order to implement coordinate systems 
which are Affine, Projective, Jacobian, Chudnovsky-
Jacobian, the modified Jacobian and mixed coordinate 
systems will be computed to be able to implement in EC 
encryption and digital signature of the global smart cards.  \ 

 

VI.  CONCLUSION 
As a conclusion we have fulfilled elliptic curve 

exponentiation over prime field (ܨ௣) for EC encryption and 
digital signature in the global smart card.  ECDLP is based 
on DLP which is explained finite field over elliptic curve. 
Elliptic curve exponentiation include in coordinate systems 
of elliptic curve cryptography that coordinate systems will 
be implemented in the global smart card such as encryption 
and digital signature. In these coordinate systems consists of 
two points which is point addition and point doubling. 
Coordinate systems are Affine, projective, Jacobian, 
Jacobian-Chudnovsky and the modified Jacobian 
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coordinates. These coordinate systems are mixed that one 
coordinate system has occurred what to implement prime 
field (ܨ௣) over elliptic curve cryptography in global smart 
cards. As a result of mixed coordinate system (represented 
by the symbols ܣ, ܲ, ,ܬ ,௖ܬ  ௠) gives a large number ofܬ ݀݊ܽ 
possibilities. 
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