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Abstract—Nowadays, the SoC is concentrated by all over the 

world with interest. The design trend of the SoC is hardware 

and software co-design which includes the design of hardware 

structure in RTL level and the development of embedded 

software. As the complexity of SoC design increases with 

technology development, the observability of the SoC’s internal 

state is no longer easy to achieve. Because of the above reasons, 

debugging the SoC system becomes very difficult and 

time-consuming. So we need a reliable debugger to find the bugs 

in the SoC and embedded software. In this paper, we deal with 

implementation of a hardware debugger named OCD2G which 

is based on IEEE 1149.1 JTAG standard and supports 

halt-mode and monitoring-mode debugging. In order to verify 

the operation of OCD2G, the designed debugger is integrated 

into the 32bit RISC processor - Core-A (Core-A is an embedded 

processor designed in South Korea) and is tested by 

interconnecting with software debugger.  

 

Index Terms—Debugger, JTAG, On-Chip Debugger, 

Processor.  

 

I. INTRODUCTION 

Some bugs about the SoC (System on Chip) or its 

application programs will appear only when executing the 

applications in real. OCD2G (On-Chip Debugger Second 

Generation) is considered as the act for adding debug support 

to the SoC under the realization that not every application 

will work correctly at the first time. Thus OCD2G is very 

necessary for SoC design and can reduce time-to-market and 

design cost. 

Most of the SoCs include the RISC processor which is 

integrated with its unique debug unit. In this paper, we 

proposed an OCD2G which can support the halt-mode and 

monitoring-mode debugging. OCD2G can observe the 

internal operation of the SoC due to its several debugging 

functions such as breakpoint assignment and detection, 

internal state observation and modification, single step, run 

and stop. 

 

II. RELATED WORK 

The following Fig. 1 shows the target system which 

embeds the OCD2G to prove the functionality of debugger. 

The system embeds the main processor – Core-A [1] and 

many peripherals with bus connection. The bus type will be 

an AMBA or a Wishbone bus. When doing the verification, 

the OCD2G will be embedded in Core-A. 

 

 

Fig. 1. Core-A SoC platform 

 

Core-A is a general purpose 32-bit microprocessor. Its 

architecture is based on RISC (Reduced Instruction Set 

Computer) and has the Harvard architecture. It has 5 stage 

pipelines – fetch, decode, execute, memory and write-back 

stage. Core-A is implemented with simple hardware structure 

and has small gate count. It can process DSP programs and 

has efficient code density. The processor also has the 

interface for coprocessor such as FPU. Core-A can be 

sponsored to anyone in Korea in type of fully synthesizable 

soft IP.  

 

III. ON-CHIP DEBUGGER 2G 

The proposed OCD2G offers system control and internal 

state control function to observe the operation of the SoC. 

System control function can halt and resume the program 

flow executed in the SoC and internal state control function 

can read and write both the register and memory values. Due 

to the above 2 functions, software debugger [2] can execute 

several debugging operations by OCD2G. OCD2G can 

debug the target in method of inserting debug clock called 

halt-mode debugging. Also it can do debugging functions in 

exception method called monitoring-mode debugging.  

A. Architecture  

In order to achieve the above functions, as shown in Fig. 2, 

OCD2G is composed of 4 main modules. First, JTAG is used 

as intermediate for transferring data between software 

debugger and OCD2G through emulator board. Second, 
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On-Chip Emulator (OCE) offers breakpoint setting and 

detection. Third, MM_COP supports the coprocessor 

interface for monitoring-mode debugging. Fourth, Debug 

Control Unit (DCU) is the most important module in OCD2G. 

DCU controls the functions of the OCD2G to execute the 

debugging operations and supports halt-mode and 

monitoring-mode debugging. 

 

 

Fig. 2. OCD2G Architecture 

1) JTAG 

JTAG [3] module uses only 5 I/O pins to interface the 

software debugger and OCD2G. SoC includes so many IPs 

that there are not enough pins available. Therefore, we chose 

the JTAG protocol for transferring data between hardware 

debugger and software debugger.  

 

Fig. 3. JTAG Block Diagram 

As shown in Fig. 3, the designed JTAG module includes 

TAP, TAP controller, 3 scan chains and several registers. It 

delivers data by using scan chains.  

 Scan chain 0 includes 65 bits which is connected with 
32bit instruction bus, 32bit data bus and 1bit control signal. 
It executes the data transferring function between OCD2G 
and processor.  

 Scan chain 1 is 38bit long and can access the OCE’s 
registers. The roles of scan chain 1 are breakpoint 
assignment and debug state control. 

 Scan chain 2 is 35bit long and can access the MM_COP’s 
registers. It transfers data between MM_COP and 
software debugger. 

2) On-chip emulator 

OCE does the function of breakpoint assignment and 

detecting. It is composed of 2 breakpoint register sets and a 

comparator as shown in Fig. 2. We can assign the breakpoint 

through the scan chain 0 and detect the breakpoint by 

comparing the value of breakpoint register set and address 

bus.  

It is quite necessary to have the debugging functions such 

as single step, range breakpoint, coupled hardware and 

software breakpoints for system debugging. In order to use 

the debugging functions, there must be at least 2 breakpoint 

register sets. So we implement 2 breakpoint register sets in 

OCE block.  

3) Monitoring-mode coprocessor 

MM_COP is a coprocessor for monitoring-mode 

debugging. It contains the coprocessor interface part and 4 

registers for transferring data between software debugger and 

Core-A. Monitoring-mode debugging forces the Core-A into 

exception for debugging the processor and does not halt the 

target. The following Fig. 4 shows the detail information 

about MMCR. We can access the MMCR through the scan 

chain 2 and do the monitoring-mode debugging by setting the 

MMCR.  

 

Fig. 4. Monitoring-Mode Control Register (MMCR) format 

4) Debug Control Unit 

DCU is the kernel block in OCD2G. It controls the debug 

mode entry and exit of processor. The timings of debug mode 

entry and exit are different for breakpoint types, breakpointed 

instructions and debugging mode. For deciding the timings, 

DCU refers to the 5 signals – IE (Instruction End), IV 

(Instruction Valid), MI (Multi-cycle Instruction), BI (Branch 

Instruction) and DM (Debugging Mode).  

There are 3 major behaviors needed for debugging 

functions. First is the debug mode entry by breakpoint or 

watchpoint. Second is the automatic transferring of (debug 

mode)-(system mode)-(debug mode) for memory access. The 

third is the debug mode exit for resume. As shown in Fig. 5, 

DCU controls the behaviors and generates only one signal – 

pcon (Processor Control) to manage the processor’s 

operation for debugging. The pcon signal controls the 

internal pipeline of target in halt-mode debugging and forces 

the Core-A into exception for monitoring-mode debugging.  

 

Fig. 5. Debug Control Unit 

B. Mechanism  

There are 2 control mechanisms of controlling OCD2G to 

debug the processor. One is halt-mode mechanism and the 

other one is monitoring-mode.  

1) Halt-mode debugging 

Halt-mode mechanism [3] is shown in Fig. 6. The designed 

OCD2G takes the debug mode which gives the control 

authority of processor to OCD2G for debugging. In 
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debugging procedure, OCD2G repeats the debug mode entry 

and exit. Processor entries into debug mode for debugging 

and exits from debug mode and enters into system mode after 

ending debugging. While checking the processor’s state, the 

processor will entry into debug mode if OCD2G detects the 

breakpoint or watchpoint. During the debugging, all 

debugging functions will be realized by register read/write, 

memory read/write and debug mode entry/exit.  

 

 

Fig. 6. Halt-Mode Control Mechanism 

In halt-mode debugging, OCD2G uses the instruction 

insertion method to debug the processor. Processor enters 

into debug mode by the request of OCD2G and be controlled 

by debugging instructions inserted through scan chain 0 

connected with 32bit bus. The procedure of halt-mode 

debugging is shown in Fig. 7. We show the case of 

appointing a breakpoint in the particular program address 

“N”.  

Firstly, we assign the breakpoint register set of OCE as 

“N” through scan chain 1.  

Secondly, OCE will active the BREAKPT signal as 1 

when comparator detects the value “N” carried on address 

bus.  

Thirdly, after receiving the BREAKPT signal, DCU 

checks the processor’s state to determine the validation of 

breakpoint. Then, it changes the main clock as debug clock 

and controls processor to enter into debug mode when 

“N+16” shows address bus. 

Forthly, during debug mode, we can debug the target 

through software debugger by executing some debugging 

functions. 

Fifthly, after finishing the debugging, software debugger 

restores the values and the processor will resume its previous 

state. 
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Fig. 7. Halt-Mode Debugging Procedure 

2) Monitoring-mode debugging 

Monitoring-mode mechanism is shown in Fig. 8. The 

procedure of monitoring-mode is almost the same with 

halt-mode. The difference is that the monitoring-mode does 

not halt the Core-A for debugging.  
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Fig. 8. Monitoring-Mode Control Mechanism 

The procedure of monitoring-mode debugging is shown in 

Fig. 9.  

Firstly, we assign the breakpoint register set of OCE 

through scan chain 1. Then, OCE will active the BREAKPT 

signal as 1 when comparator detects breakpoint or 

watchpoint.  

Secondly, after receiving the BREAKPT signal, DCU 

checks the processor’s state to determine the validation of 

breakpoint. Then, it forces the Core-A into exception for 

monitoring-mode. 

Thirdly, during debug mode, we can debug the target 

through software debugger by executing service routine of 

exception for monitoring-mode. 

Fourthly, after finishing the debugging, the Core-A will 

return from exception into system mode and the core will 

resume its previous state. 

BREAKPT

Debug_ACK

Service Routine for 
Monitoring-Mode

Debug Mode REG. Setting

Routine for REG. Read/Write

Routine for MEM Read/Write

Routine for Single-Step

Return From Exception

Debugging Functions

Read/Write REG.

Read/Write MEM

Single-Step

Exit from Debug 
Mode

System Mode

System Mode

Coprocessor I/F

Debug Exception Entry
Breakpoint /

Watchpoint Detection

Breakpoint / 
Watchpoint Setting

On-Chip Debgger 2G Core-A

D
eb

u
g
 M

o
d
e

1
2

3

4

 

Fig. 9. Monitoring-Mode Debugging Procedure 

In debug mode both for halt-mode and monitoring-mode 

debugging, OCD2G offers several abilities - register 

read/write, memory read/write and breakpoint assignment. 
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We can implement all software debugging functions by using 

the above abilities of OCD2G.  

 

IV. VERIFICATION AND RESULT 

We have done 2 stage verification procedures – functional 

level simulation by simulator and FPGA level verification. 

Functional level simulation costs much time, but has the 

benefit that can apply desired various methods and 

algorithms in verification. FPGA verification tests the 

applications in real time, so it can do the verification about 

timing-sensitive and exception cases.  

In functional simulation verification, we have tested the 

debugging functions of OCD2G in all considerable cases - 

single instruction test, combination instruction test, various 

application algorithms test and so on. The tested functions are 

breakpoint assignment, single step, register read/write, 

memory read/write and debug mode entry and exit for 

halt-mode and monitoring-mode debugging. With the help of 

the functional level simulation, we not only prove the 

OCD2G’s functionality, but also the reliability of OCD2G. 

Functional level simulation does not consider the gate 

delay, exceptions and real-time, so we do the FPGA level 

verification as well.  

Before testing the OCD2G, we inspect if the target do the 

wrong operation. As things turned out, the processor with a 

built-in OCD2G works normally.  

We have done the OCD2G verification by implementing 

the whole debug system as shown in Fig. 10. The Emulator 

Board which does the interface role between the target 

system and software debugger is made by out laboratory. 

Also the software debugger is. We modify the target 

dependent part of GDB [4]-[10] and link it with eclipse 

GUI(Graphic User Interface) to implement the software 

debugger. We embedded the OCD2G into Core-A SoC 

platform and downloaded it in FPGA and connected with 

software debugger through Emulator Board. In the debug 

system, we have tested all the debugging functions at desired 

timing for halt-mode and monitoring-mode debugging. The 

tested functions [11] are breakpoint assignment and detection, 

run and stop, single step, register read/write, memory 

read/write, variable read/write and so on. During the 

verification, Core-A executes several audio application 

algorithms such as ADPCM, SOLA and MP3. We also have 

done the test with changing the bus to Wishbone bus. 

 

 

Fig. 10. Debug System 

The synthesis result of the designed OCD2G by using 

0.18μm CMOS cell library is shown in table 1. Gate count 1 

is referenced by 2-input NAND gate. There is 17.20% gate 

count overhead.  

TABLE I: GATE COUNT 

Module name Gate count 

JTAG 2233 

On-Chip Emulator (OCE) 2530 

Monitoring-Mode Coprocessor (MM_COP) 1652 

Debug Control Unit (DCU) 288 

On-Chip Debugger 2G (OCD2G) 6627 

Target processor with OCD2G 38532 

 

V. CONCLUSION AND FUTURE WORK 

A. Figures and Tables 

In this paper, we designed the debugger – OCD2G which 

can debug the RISC processor in halt-mode and 

monitoring-mode. We embed the OCD2G into Core-A SoC 

platform and test it by linking with emulator board and 

software debugger based on GDB and Eclipse GUI. Through 

the test, we prove the OCD2G’s functionality and reliability 

as a debugger.  

There are some more tasks to do in the future which 

improve the OCD2G’s performance. The first one is the 

verification and application of the OCD2G with silicon chip. 

The second one is adding the real-time debugging function in 

the OCD2G.  
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