



Abstract—Nowadays, the SoC is concentrated by all over the

world with interest. The design trend of the SoC is hardware

and software co-design which includes the design of hardware

structure in RTL level and the development of embedded

software. As the complexity of SoC design increases with

technology development, the observability of the SoC’s internal

state is no longer easy to achieve. Because of the above reasons,

debugging the SoC system becomes very difficult and

time-consuming. So we need a reliable debugger to find the bugs

in the SoC and embedded software. In this paper, we deal with

implementation of a hardware debugger named OCD2G which

is based on IEEE 1149.1 JTAG standard and supports

halt-mode and monitoring-mode debugging. In order to verify

the operation of OCD2G, the designed debugger is integrated

into the 32bit RISC processor - Core-A (Core-A is an embedded

processor designed in South Korea) and is tested by

interconnecting with software debugger.

Index Terms—Debugger, JTAG, On-Chip Debugger,

Processor.

I. INTRODUCTION

Some bugs about the SoC (System on Chip) or its

application programs will appear only when executing the

applications in real. OCD2G (On-Chip Debugger Second

Generation) is considered as the act for adding debug support

to the SoC under the realization that not every application

will work correctly at the first time. Thus OCD2G is very

necessary for SoC design and can reduce time-to-market and

design cost.

Most of the SoCs include the RISC processor which is

integrated with its unique debug unit. In this paper, we

proposed an OCD2G which can support the halt-mode and

monitoring-mode debugging. OCD2G can observe the

internal operation of the SoC due to its several debugging

functions such as breakpoint assignment and detection,

internal state observation and modification, single step, run

and stop.

II. RELATED WORK

The following Fig. 1 shows the target system which

embeds the OCD2G to prove the functionality of debugger.

The system embeds the main processor – Core-A [1] and

many peripherals with bus connection. The bus type will be

an AMBA or a Wishbone bus. When doing the verification,

the OCD2G will be embedded in Core-A.

Fig. 1. Core-A SoC platform

Core-A is a general purpose 32-bit microprocessor. Its

architecture is based on RISC (Reduced Instruction Set

Computer) and has the Harvard architecture. It has 5 stage

pipelines – fetch, decode, execute, memory and write-back

stage. Core-A is implemented with simple hardware structure

and has small gate count. It can process DSP programs and

has efficient code density. The processor also has the

interface for coprocessor such as FPU. Core-A can be

sponsored to anyone in Korea in type of fully synthesizable

soft IP.

III. ON-CHIP DEBUGGER 2G

The proposed OCD2G offers system control and internal

state control function to observe the operation of the SoC.

System control function can halt and resume the program

flow executed in the SoC and internal state control function

can read and write both the register and memory values. Due

to the above 2 functions, software debugger [2] can execute

several debugging operations by OCD2G. OCD2G can

debug the target in method of inserting debug clock called

halt-mode debugging. Also it can do debugging functions in

exception method called monitoring-mode debugging.

A. Architecture

In order to achieve the above functions, as shown in Fig. 2,

OCD2G is composed of 4 main modules. First, JTAG is used

as intermediate for transferring data between software

debugger and OCD2G through emulator board. Second,

Xuelong Xu, Jingzhe Xu, Donghoon Lee, Daekeon Park, and Jusung Park

International Journal of Information and Electronics Engineering, Vol. 3, No. 3, May 2013

324DOI: 10.7763/IJIEE.2013.V3.327

Design of Halt-Mode and Monitoring-Mode On-Chip
Debugger 2G for Core-A

Manuscript received October 20, 2012; revised November 30, 2012. This
work was supported by the Pioneer R&D Program for converging
technology through the Korea Science and Engineering Foundation, funded
by the Ministry of Education, Science and Technology, Rep. of Korea
(M10711270001-08M1127-00110, Development of Displacement Sensing
CMOS Circuit and Pattern Recognition System) and the Industrial Strategic
Technology Development Program funded by the Ministry of Knowledge
Economy, Rep. of Korea (No. 10039173, The development of system
semiconductor technology for IT fusion revolution).

The authors are with Electronics Engineering Department at Pusan
National University, Rep. of Korea. Busan, 609-735 Korea (e-mail:
xuxuelong@pusan.ac.kr; kchuh@pusan.ac.kr; kdhyi17@nate.com;
nsodium@pusan.ac.kr; juspark@pusan.ac.kr).

On-Chip Emulator (OCE) offers breakpoint setting and

detection. Third, MM_COP supports the coprocessor

interface for monitoring-mode debugging. Fourth, Debug

Control Unit (DCU) is the most important module in OCD2G.

DCU controls the functions of the OCD2G to execute the

debugging operations and supports halt-mode and

monitoring-mode debugging.

Fig. 2. OCD2G Architecture

1) JTAG

JTAG [3] module uses only 5 I/O pins to interface the

software debugger and OCD2G. SoC includes so many IPs

that there are not enough pins available. Therefore, we chose

the JTAG protocol for transferring data between hardware

debugger and software debugger.

Fig. 3. JTAG Block Diagram

As shown in Fig. 3, the designed JTAG module includes

TAP, TAP controller, 3 scan chains and several registers. It

delivers data by using scan chains.

 Scan chain 0 includes 65 bits which is connected with
32bit instruction bus, 32bit data bus and 1bit control signal.
It executes the data transferring function between OCD2G
and processor.

 Scan chain 1 is 38bit long and can access the OCE’s
registers. The roles of scan chain 1 are breakpoint
assignment and debug state control.

 Scan chain 2 is 35bit long and can access the MM_COP’s
registers. It transfers data between MM_COP and
software debugger.

2) On-chip emulator

OCE does the function of breakpoint assignment and

detecting. It is composed of 2 breakpoint register sets and a

comparator as shown in Fig. 2. We can assign the breakpoint

through the scan chain 0 and detect the breakpoint by

comparing the value of breakpoint register set and address

bus.

It is quite necessary to have the debugging functions such

as single step, range breakpoint, coupled hardware and

software breakpoints for system debugging. In order to use

the debugging functions, there must be at least 2 breakpoint

register sets. So we implement 2 breakpoint register sets in

OCE block.

3) Monitoring-mode coprocessor

MM_COP is a coprocessor for monitoring-mode

debugging. It contains the coprocessor interface part and 4

registers for transferring data between software debugger and

Core-A. Monitoring-mode debugging forces the Core-A into

exception for debugging the processor and does not halt the

target. The following Fig. 4 shows the detail information

about MMCR. We can access the MMCR through the scan

chain 2 and do the monitoring-mode debugging by setting the

MMCR.

Fig. 4. Monitoring-Mode Control Register (MMCR) format

4) Debug Control Unit

DCU is the kernel block in OCD2G. It controls the debug

mode entry and exit of processor. The timings of debug mode

entry and exit are different for breakpoint types, breakpointed

instructions and debugging mode. For deciding the timings,

DCU refers to the 5 signals – IE (Instruction End), IV

(Instruction Valid), MI (Multi-cycle Instruction), BI (Branch

Instruction) and DM (Debugging Mode).

There are 3 major behaviors needed for debugging

functions. First is the debug mode entry by breakpoint or

watchpoint. Second is the automatic transferring of (debug

mode)-(system mode)-(debug mode) for memory access. The

third is the debug mode exit for resume. As shown in Fig. 5,

DCU controls the behaviors and generates only one signal –

pcon (Processor Control) to manage the processor’s

operation for debugging. The pcon signal controls the

internal pipeline of target in halt-mode debugging and forces

the Core-A into exception for monitoring-mode debugging.

Fig. 5. Debug Control Unit

B. Mechanism

There are 2 control mechanisms of controlling OCD2G to

debug the processor. One is halt-mode mechanism and the

other one is monitoring-mode.

1) Halt-mode debugging

Halt-mode mechanism [3] is shown in Fig. 6. The designed

OCD2G takes the debug mode which gives the control

authority of processor to OCD2G for debugging. In

International Journal of Information and Electronics Engineering, Vol. 3, No. 3, May 2013

325

debugging procedure, OCD2G repeats the debug mode entry

and exit. Processor entries into debug mode for debugging

and exits from debug mode and enters into system mode after

ending debugging. While checking the processor’s state, the

processor will entry into debug mode if OCD2G detects the

breakpoint or watchpoint. During the debugging, all

debugging functions will be realized by register read/write,

memory read/write and debug mode entry/exit.

Fig. 6. Halt-Mode Control Mechanism

In halt-mode debugging, OCD2G uses the instruction

insertion method to debug the processor. Processor enters

into debug mode by the request of OCD2G and be controlled

by debugging instructions inserted through scan chain 0

connected with 32bit bus. The procedure of halt-mode

debugging is shown in Fig. 7. We show the case of

appointing a breakpoint in the particular program address

“N”.

Firstly, we assign the breakpoint register set of OCE as

“N” through scan chain 1.

Secondly, OCE will active the BREAKPT signal as 1

when comparator detects the value “N” carried on address

bus.

Thirdly, after receiving the BREAKPT signal, DCU

checks the processor’s state to determine the validation of

breakpoint. Then, it changes the main clock as debug clock

and controls processor to enter into debug mode when

“N+16” shows address bus.

Forthly, during debug mode, we can debug the target

through software debugger by executing some debugging

functions.

Fifthly, after finishing the debugging, software debugger

restores the values and the processor will resume its previous

state.

NBreakpoint

CLK

BREAKPT

Debug

STATE Debug State

N+16A[31:0] N-4 N+4NN-8 N+8

System State

5. Clock switching

4. Enter into debug mode

1. Set breakpoint

2. A[31:0] matches with the breakpoint N

3. Generate the BREAKPT signal

Debug CLKSystem CLK System CLK

System State

 N N+4 N+8 N+12

6. Clock switching

7. Exit from debug mode

N+12

Fig. 7. Halt-Mode Debugging Procedure

2) Monitoring-mode debugging

Monitoring-mode mechanism is shown in Fig. 8. The

procedure of monitoring-mode is almost the same with

halt-mode. The difference is that the monitoring-mode does

not halt the Core-A for debugging.
Start

Polling others

Exception

1

Select Scan-chain 3

Write 0x800 into Status Reg. for enabling monitoring-mode

Select Scan-chain 3

Read Status

Reg.[D.EXP&C.ACK]

Check the value if is 11 or others

11 : exit

others : repeat

Monitoring-mode Menu

BP Set S-S Mem R/W MM.EntryPS R/W Reg. R/W End

WriteReadWriteRead WriteRead PollingPolling

Polling

R W R WR W

Write COP

STATUS(0xC08)

Polling

Read COP

RDATA(value)

Polling

Write COP

WDATA(value)

Write COP

STATUS(0xC28)

Polling

Write COP STATUS

(0xC00|(index<<6))

Polling

Read COP

RDATA(value)

Polling

Write COP

WDATA(value)

Write COP STATUS

(0xC00|(index<<6))

Polling

Write COP

ADDR(address)

Polling

Read COP

RDATA(value)

Write COP

STATUS(0xC10)

Polling

Write COP

ADDR(address)

Write COP

STATUS(0xC30)

Write COP

WDATA(value)

Write COP

STATUS(0xC04)

Exit the program

BP Set for S-S

Write COP

STATUS(0xC04)

BP Set for

anypoint

Polling

Write OCE

Breaker

Goto Menu

Polling.D.S

Read COP

RDATA(RA)

Polling.D.S 1

0

0

Polling

Polling.D.S

Read COP

RDATA(RA)

1

0

Polling.D.S 1

01

MM.Entry

Polling.DS

0

1

Select Scan-chain 3

Read Status Reg.[D.EXP]

Check the value if is 1 or 0

0 : exit

1 : repeat

Fig. 8. Monitoring-Mode Control Mechanism

The procedure of monitoring-mode debugging is shown in

Fig. 9.

Firstly, we assign the breakpoint register set of OCE

through scan chain 1. Then, OCE will active the BREAKPT

signal as 1 when comparator detects breakpoint or

watchpoint.

Secondly, after receiving the BREAKPT signal, DCU

checks the processor’s state to determine the validation of

breakpoint. Then, it forces the Core-A into exception for

monitoring-mode.

Thirdly, during debug mode, we can debug the target

through software debugger by executing service routine of

exception for monitoring-mode.

Fourthly, after finishing the debugging, the Core-A will

return from exception into system mode and the core will

resume its previous state.

BREAKPT

Debug_ACK

Service Routine for
Monitoring-Mode

Debug Mode REG. Setting

Routine for REG. Read/Write

Routine for MEM Read/Write

Routine for Single-Step

Return From Exception

Debugging Functions

Read/Write REG.

Read/Write MEM

Single-Step

Exit from Debug
Mode

System Mode

System Mode

Coprocessor I/F

Debug Exception Entry
Breakpoint /

Watchpoint Detection

Breakpoint /
Watchpoint Setting

On-Chip Debgger 2G Core-A

D
eb

u
g
 M

o
d
e

1
2

3

4

Fig. 9. Monitoring-Mode Debugging Procedure

In debug mode both for halt-mode and monitoring-mode

debugging, OCD2G offers several abilities - register

read/write, memory read/write and breakpoint assignment.

International Journal of Information and Electronics Engineering, Vol. 3, No. 3, May 2013

326

We can implement all software debugging functions by using

the above abilities of OCD2G.

IV. VERIFICATION AND RESULT

We have done 2 stage verification procedures – functional

level simulation by simulator and FPGA level verification.

Functional level simulation costs much time, but has the

benefit that can apply desired various methods and

algorithms in verification. FPGA verification tests the

applications in real time, so it can do the verification about

timing-sensitive and exception cases.

In functional simulation verification, we have tested the

debugging functions of OCD2G in all considerable cases -

single instruction test, combination instruction test, various

application algorithms test and so on. The tested functions are

breakpoint assignment, single step, register read/write,

memory read/write and debug mode entry and exit for

halt-mode and monitoring-mode debugging. With the help of

the functional level simulation, we not only prove the

OCD2G’s functionality, but also the reliability of OCD2G.

Functional level simulation does not consider the gate

delay, exceptions and real-time, so we do the FPGA level

verification as well.

Before testing the OCD2G, we inspect if the target do the

wrong operation. As things turned out, the processor with a

built-in OCD2G works normally.

We have done the OCD2G verification by implementing

the whole debug system as shown in Fig. 10. The Emulator

Board which does the interface role between the target

system and software debugger is made by out laboratory.

Also the software debugger is. We modify the target

dependent part of GDB [4]-[10] and link it with eclipse

GUI(Graphic User Interface) to implement the software

debugger. We embedded the OCD2G into Core-A SoC

platform and downloaded it in FPGA and connected with

software debugger through Emulator Board. In the debug

system, we have tested all the debugging functions at desired

timing for halt-mode and monitoring-mode debugging. The

tested functions [11] are breakpoint assignment and detection,

run and stop, single step, register read/write, memory

read/write, variable read/write and so on. During the

verification, Core-A executes several audio application

algorithms such as ADPCM, SOLA and MP3. We also have

done the test with changing the bus to Wishbone bus.

Fig. 10. Debug System

The synthesis result of the designed OCD2G by using

0.18μm CMOS cell library is shown in table 1. Gate count 1

is referenced by 2-input NAND gate. There is 17.20% gate

count overhead.

TABLE I: GATE COUNT

Module name Gate count

JTAG 2233

On-Chip Emulator (OCE) 2530

Monitoring-Mode Coprocessor (MM_COP) 1652

Debug Control Unit (DCU) 288

On-Chip Debugger 2G (OCD2G) 6627

Target processor with OCD2G 38532

V. CONCLUSION AND FUTURE WORK

A. Figures and Tables

In this paper, we designed the debugger – OCD2G which

can debug the RISC processor in halt-mode and

monitoring-mode. We embed the OCD2G into Core-A SoC

platform and test it by linking with emulator board and

software debugger based on GDB and Eclipse GUI. Through

the test, we prove the OCD2G’s functionality and reliability

as a debugger.

There are some more tasks to do in the future which

improve the OCD2G’s performance. The first one is the

verification and application of the OCD2G with silicon chip.

The second one is adding the real-time debugging function in

the OCD2G.

REFERENCES

[1] Core-A IP Manual. (2009). [Online]. Available:

http://www.core-a.net/, 2009.

[2] Open On-Chip Debugger. [Online]. Available:

http://openocd.berlios.de/web/

[4] J. Xu, H. Park, S. Jung, J. Park, "Design and Verification of Efficient

On-Chip Debugger for Core-A," IEEK Semiconductor & Devices, vol.

47, no. 4, pp. 50-61, Apr. 2010.

[5] R. Stallman, R. Pesch, and S. Shebs, "GDB User Manual: Debugging

With GDB(The GNU Source-Level Debugger)," GDB version 6.4.

Technical report, Free Software Foundation, Cambridge, MA.

[6] B. Gatliff, Embedding with GNU: The gdb Remote Serial Protocol.

Red Hat Developer Network (RHDN), 1999.

[7] M. Tan. (2002). A minimal GDB stub for embedded remote debugging.

[Online]. Available:

http://www1.cs.columbia.edu/~sedwards/classes/2002/w4995-02/tan-f

inal.pdf

[8] S. Shebs, GDB: An Open Source Debugger for embedded Development.

Red Hat, 2000.

[9] R. Pizzi , GNU gdb Internal Architecture, 1993.

[10] J. Gilmore and S. Shebs. (2004). GDB Internals, Cygnus Solutions,

[Online]. Available: www.gnuarm.com/pdf/gdbint.pdf.

[11] J. Bennet. Howto: Porting the GNU Debugger. Practical Experience

with the OpenRISC 1000 Architecture. (2008). [Online]. Available:

http://www.embecosm.com/download/ean3.html

Xuelong Xu received the Bachelor’s Degree

majoring in Measuring&Control Technology and

Instrumentations from Harbin Engineering

University, Harbin, Heilongjiang, China, in 2010. He

is currently working toward the Master of Science in

electronics engineering at Pusan National University,

Rep. of Korea. His research interests include

microprocessor design, multi-media SoC platform

implementation and low-power PCB design.

International Journal of Information and Electronics Engineering, Vol. 3, No. 3, May 2013

327

[3] IEEE Standard Test Access Port and Boundary-Scan Architecture,
Test Technology Standards Committee, 2001.

Jing-Zhe Xu received the BS in electronic

communication engineering from Yanbian

University of Science and Technology, Yanji, Jilin,

China, and the MS in electronic engineering from

Pusan National University, Busan, Rep. of Korea,

in 2005 and 2008, respectively. He is currently

working toward the PhD in electronics engineering

at Pusan National University, Rep. of Korea. His

research interests include microprocessor design,

multicore platform implementation and on-chip debug architecture.

Donghoon Lee received B.S. and M.S. degrees in

electronic engineering from Pusan National

University, Busan, Korea, in 2005 and 2007,

respectively. He is currently working toward a

Ph.D. degree at the VLSI Design Laboratory,

Department of Electronic Engineering, Pusan

National University. His research interests include

design of digital signal processor, design of

multiprocessor SoC platform, and development of audio algorithm.

Daekeon Park received B.S. degrees in electronic

engineering from Pusan National University, Busan,

Korea. He is currently working toward the M.S.

degree in electronics engineering at Pusan National

University. His research interests include

microprocessor design, M-PHY transceiver IP design

and implementation.

Jusung Park was born in Junju, Korea, on 1953

December 19. He received a B.S degree in

electronic engineering from Pusan National

University, Busan,

Korea, in 1976, an M.S. degree in electrical

engineering from KAIST, Seoul, Korea, in 1978,

and a Ph.D. degree in electrical engineering from

the University of Florida, Gainsville, US, in 1989.

From 1978 to 1991 he was with ETRI, Daejun,

Korea, as a principal research engineer, manger, and

director of the IC design group. While at ETRI he designed several bipolar

analog ICs and was in charge of developing VCR ICs, CMOS 8-bit

microprocessors, and telecommunication chips. In 1991 he joined the

Electronics Department of Pusan National University, Busan, Korea, where

he is now a professor of electrical engineering. His current research interests

are microprocessor and DSP core design, and digital audio algorithm

implementation by hardware and software co-design.

International Journal of Information and Electronics Engineering, Vol. 3, No. 3, May 2013

328

