
  

  
Abstract—The paper presents an algorithm for compression 

of front-end feature extracted parameters used in Distributed 
Speech Recognition (DSR). In the proposed method the source 
encoder is mainly based on truncated Singular Value 
Decomposition transform (SVD) with conventional vector and 
scalar quantizers. The system provides a compression bit-rate 
around 3500 bps. The experiments were carried out on the 
TIDigitsAurora-2 database using Hidden Makcov Model 
Toolkit (HTK). The simulation results show good recognition 
performance without dramatic change, comparing 
toconventional ETSI Aurorastandard front-end feature 
compression algorithm with quantized features at 4400 bps. 
 

Index Terms—Distributed speech recognition, vector and 
scalar quantizers, singular value decomposition, aurora-2 
database. 
 

I. INTRODUCTION 
The increasing use of mobile and World Wide Web 

networks for speech communication has led to Distributed 
Speech Recognition (DSR) systems being developed and 
standardized by the European Telecommunication Standards 
Institute ETSI [1]. As shown in Fig. 1, the basic idea of DSR 
consists of using a local Front-end (FE) from which speech 
features are extracted and transmitted through a data channel 
to a remote Back-end (BE) or remote server recognizer. The 
speech features used for recognition are the first 12 MFCCs 
c1-c12, the zerothcepstral coefficient c0 and the log energy 
logEin the frame. The 14-dimentional feature vector is split 
into seven sub-vectors.  

 
Fig. 1. A DSR block model. 

 
Each of the sub-vectors is encoded with a different 2-dim 

Vector Quantizer (VQ). The standard computes a feature 
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vector every 10ms and allocates 44 bits to each feature vector 
to achieve a total bit-rate of 4400 bps [1]. The number of bits 
allocated to the different sub-vectors is shown in Table I.   

 
TABLE I: BIT ALLOCATION IN ETSI AURORA STANDARD 

Sub-vector Bits allocated 
c1, c2 6 
c3, c4 6 
c5, c6 6 
c7, c8 6 
c9, c10 6 
c11, c12 6 
c0, logE 8 

 
The Aurora-2 database [2] consists of connected digit 

sequences for American English Talkers. It provides speech 
samples and scripts to perform speaker independent speech 
recognition experiments in clean and noisy conditions. This 
database has been prepared by down-sampling to 8 kHz, 
filtering with the G.712 and MIRS characteristics; noise is 
artificially added to the filtered TIDigits at a desired SNR (20, 
15, 10, 5, 0, -5dB) with including clean condition, and eight 
different noise conditions such as:  

Various schemes for compressing the MFCC vectors have 
been proposed in the literature. Among these methods there 
are the coding based on Discrete Cosine Transforms (DCT & 
2DCT) [3], [4] and another method that exploits the mutual 
information measure between feature sub-vectors [5].  

In this paper a truncated Singular Value Decomposition 
(SVD) transform [6] is used to compress feature vectors. This 
transform is widely used in signal processing such as image 
coding systems and noise reduction. In the proposed method 
we applied the same principle that employed in image 
compression by stacking a set of MFCC feature vectors to 
have a matrix structure. The rest of the paper is organized as 
follow: Section II introduces a general overview of SVD 
transform, a detailed description of the algorithm is provided 
in Section III. In Section IV we summarize the experimental 
results. Finally in Section V we offer our conclusion. 

 

II. SINGULAR VALUE DECOMPOSITION 
Singular Value Decomposition is an extremely powerful 

Low Bit-Rate Encoding Algorithm for Distributed Speech 
Recognition Based on SVD Decomposition 

A. Touazi and M. Debyeche 

International Journal of Information and Electronics Engineering, Vol. 3, No. 5, September 2013

536DOI: 10.7763/IJIEE.2013.V3.373 

 Subway 

 Babble 

 Car 

 Exhibition hall 

 Restaurant

 Street 

 Airport 

 Train station. 



  

and useful tool in linear algebra. Let’s say we have a matrix A 
with m rows and n columns, then there exist orthogonal 
matrices U (m × m) and V (n × n), such that:  

],,,[ 21 muuuU …=                         (1) 

],,,[ 21 nvvvV …=                              (2) 

It can be proven that [7]: 
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(3)  

where:     
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The σi A and the vectors uiand 
viare the ithleft singular vector and the ith right singular 
vector respectively. Then A can be factorized into three 
matrices: 

TUSVA =                             (5) 

Here, S is an m×n diagonal matrix with singular values (σi) 
on the diagonal. The SVD reveals a great deal about the 
structure of matrix. If the SVD of A is given by (5) and we 
define r by:  

011 ===>≥≥ + prr σσσσ ""             (6) 

Then:       

rARank =)(                            (7) 

So we have the compact SVD defined by: 
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In other words, the rank of matrix A is equal to the number 
of its nonzero singular values [7]. 

A. Truncated SVD 
In the truncated version, the SVD of A given by (8) can be 

adjusted by: 
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Only the t column vectors of U and thet column vectors of 
V corresponding to the t largest singular values are calculated. 
The rest of the matrix is discarded; this can be much quicker 
and more economical than the compact SVD if t<<r. The 
approximate matrix A* is in a very useful sense the closest 
approximation to A that can be achieved by a matrix of rank t 
[7]. 

 

III. COMPRESSION ALGORITHM 
The use of this method is motivated by the SVD energy 

compaction property or truncated SVD, The analysis part of 
the algorithm is depicted in Fig. 2. It can be seen that 12 
successive MFCC vectors are stacked together to form a 
block of 14×12 (matrix of 14 rows and 12 columns).  

By considering the high difference in magnitude between 
(c0, logE) and the rest of MFCC coefficients, theblock of 
14×12 is split into two sub-blocks of 12×12 and 2×12, such 
that the rank of the first sub-block equals to 12 and the rank of 
the second sub-block equals to 2. In the next step and by 
applying a truncated SVD for each sub-block, various 
experiments have been performed to evaluate the 
adequaterank. Therefore the new ranks for the truncated 
versionswill be set to 1 and 5 respectively.  

 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. SVD transforming for MFCC block. 

The choice of these new ranks is approved by an 
experiment with comparing the SNR average (sets A, B and 
C) of each MFCC coefficient in the case of both Aurora 
encoder and truncated SVD with different ranks (1, 4, 5, 6 
and 8). As shown in Fig. 3 for the first sub-block (c1-c12) it 
can be seen that in the truncated SVD at the rank number 5 
the SNR degrees are higher than the Aurora encoder for the 
first five coefficients (c1-c5) and are decreasing from the 
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are the singular values of 



  

coefficient c6. It is well known that the lower feature 
coefficients provide the greatest contribution to recognition 
performance [8]. Thus, a truncated SVD with a rank number 
5 can lead to a minor influence in the recognition 
performance. Another reason to choose Rank 5 is due to the 
gain on computational cost that we can achieve in the 
quantization phase, with maintaining the recognition 
performance comparing with superior ranks.  

 
Fig. 3. SNR measurement for each MFCC coefficient (c1-c12) with  

different ranks. 
 

For the second sub-block (c0, logE), from the results 
shown in Table II and comparing to ETSI Aurora encoding, 
for the new truncated SVD with rank 1 it is very likely that 
we can improve the recognition performance if we use c0 in 
the recognition task; unless if we use logE the performance 
will be smoothly degraded. 

 
TABLE II: SNR MEASUREMENTFOR ENERGY COEFFICIENTS 

MFCC 
Coefficient 

Aurora 
coding 

Truncated SVD 
(Rank=1) 

c0 41.87 77.03 

logE 40.44 34.01 

 
In the quantization phase, for the first sub-block all 

columns vectors of both matrix U and V are encoded using 
Split Vector Quantizer (SVQ) with the same codebooks, in 
which each columnvector is split into four sub-vectors and 
each sub-vector is quantized using its own VQ codebook 
trained with LBG algorithm [9]. The first and second column 
vectors for matrix U and V are encoded with codebooks of 
size 512 each. The third and fourth column vectors are 
encoded with codebooks of size 256 each. The fifth vectors 
are encoded with codebooks of size 128 each. The five 
singular values of matrix S are encoded using uniform scalar 
quantization of 8, 8, 8, 8, and 7 bits respectively. 

For the second sub-block, the first column vector of V is 
encoded using SVQ in which this last is split into four 
sub-vectors and each of them is quantized using its own VQ 
codebook of size 512.  The first vector column of U is 
encoded using VQ with codebook of size 512. The first 
singular value of S is encoded using uniform scalar 
quantization of 10 bits. In order to minimize the 
computational costin the quantization of the first 
singularvalue of S,the 1024(for 10 bits) values are sorted 
anddivided into four codebooks of 256 values each, then the 
scalar quantization is performed through 2 stages, the first 

stage for determining the nearest codebook that we can use 
(2bits) and the second stage for the quantization (8bits).  

The decoding process consists of the inverse operations of 
the encoding in reverse order. TheTable below shows the bits 
allocation for each sub-blockwith total of 422 bits by block of 
120 ms.Then the resulting quantization bit-rate is around      
3.51 kbps. 

TABLE III: SVD ENCODER BITS ALLOCATION 

 i ui vi σi 

 1 36 36 8 

 2 36 36 8 

Sub-Block 1 3 32 32 8 

 4 32 32 8 

 5 28 28 7 

Sub-Block 2 1 9 36 10 

 

IV. EXPERIMENTS AND RESULTS 
The experiments were carried out on the TIDigitsAurora 

corpus (Test sets A, B, and C) with MFCC vectors extracted 
using the STQ-Aurora front-end algorithm [1]. In the figures 
4, 5, and 6 we compared the SNR average results for the 
following cases: 

 
- Aurora encoder working at 4.4 kbps [1]. 
- Proposed SVD encoder working at 3.5 kbps. 
- Uncompressed truncated SVD (Rank =5). 

 

 
Fig. 4. SNR measurements (Test set A). 

As seen in Table IV, for (c0-c12) coefficients we note 
degradation from SNR levels after quantization; but for the 
first five MFCC coefficients (c0- c5) we got acceptable SNR 
values when comparing toAurora encoder. Also, we observe 
acceptable valuesin case ofc0 andlogE. 

The recognition were done using HTK 3.4 speech 
recognizer [10] to the coded MFCCs, while the c0 and 
logecoefficients are both used in the compression and only 
logE is used in the recognition task. However, the results are 
compared for both compressed and uncompressed Aurora 
recognition performance.  

As it can be shown from Fig. 7, 8 and Table V, in the clean 
condition the word level accuracies for SVD encoder are 
slightly superior in comparison with the compressed Aurora 
features and slightly inferior in the case of multi-condition. 
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Fig. 6. SNR measurements (Test set C). 

 

 

 
Fig. 7.Word accuracy before and after compression, in clean condition  

(Test sets A, B and C). 

 

 

 
aftercompression, in multi-condition 

(Test sets A, B and C). 
 

TABLE IV: SNR MEASUREMENTS AVERAGE FOR TEST SETS (A, B AND C) 

MFCC 
Coefficients

Aurora 
Encoding 
[1] 

Truncated 
SVD 
(Rank=5) 

SVD 
Encoding
 

c1 18.62 32.59 20.68 
c2 13.78 24.32 16.8 
c3 14.97 18.85 12.6 
c4 19.32 23.58 17.4 
c5 15.14 15.21 10.24 
c6 18.21 18.19 13.37 
c7 15.08 11.94 8.94 
c8 18.14 15.12 12 
c9 15.35 10.62 7.81 
c10 16.21 11.6 9.23 
c11 14.84 8.81 6.55 
c12 18.14 12.19 9.82 
c0 41.87 77.03 44.09 
logE 40.44 34.01 33.73 
Average  
(c1- c5) 16.36 22.91 15.54 

Average  
(c0, logE) 41.15 55.52 38.91 

SNR Average -Test set B-

-2
3
8

13
18
23
28
33
38
43
48
53
58
63
68
73
78

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C0 logE

MFCC Coefficients

SN
R

 (d
B

)
AURORA coding SVD coding Truncated SVD (Rank=5)

SNR Average -Test set C-

-2
3
8

13
18
23
28
33
38
43
48
53
58
63
68
73
78

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C0 logE

MFCC Coefficients

SN
R

 (d
B

)

AURORA coding SVD coding Truncated SVD (Rank=5)

Test set A in clean training

0,00
10,00
20,00
30,00
40,00
50,00
60,00
70,00
80,00
90,00

100,00

Clean SNR 20 SNR 15 SNR 10 SNR 5 SNR 0 SNR -5

SNR (dB)

W
or

d 
ac

cu
ra

cy
 (%

)

Unquantized feature Aurora quantized feature SVD quantized feature

Test set B in clean training

0,00
10,00
20,00
30,00
40,00
50,00
60,00
70,00
80,00
90,00

100,00

Clean SNR 20 SNR 15 SNR 10 SNR 5 SNR 0 SNR -5

SNR (dB)

W
or

d 
ac

cu
ra

cy
 (%

)

Unquantized feature Aurora quantized feature SVD quantized feature

Test set C in clean training

0,00
10,00
20,00
30,00
40,00
50,00
60,00
70,00
80,00
90,00

100,00

Clean SNR 20 SNR 15 SNR 10 SNR 5 SNR 0 SNR -5

SNR (dB)

W
or

d 
ac

cu
ra

cy
 (%

)

Unquantized feature Aurora quantized feature SVD quantized feature

Test set A in multi-condition training

0,00
10,00
20,00
30,00
40,00
50,00
60,00
70,00
80,00
90,00

100,00

Clean SNR 20 SNR 15 SNR 10 SNR 5 SNR 0 SNR -5

SNR (dB)

W
or

d 
ac

cu
ra

cy
 (%

)

Unquantized feature Aurora quantized feature SVD quantized feature

Test set B in multi-condition training

0,00
10,00
20,00
30,00
40,00
50,00
60,00
70,00
80,00
90,00

100,00

Clean SNR 20 SNR 15 SNR 10 SNR 5 SNR 0 SNR -5

SNR (dB)

W
or

d 
ac

cu
ra

cy
 (%

)

Unquantized feature Aurora quantized feature SVD quantized feature

Test set C in multi-condition training

0,00
10,00
20,00
30,00
40,00
50,00
60,00
70,00
80,00
90,00

100,00

Clean SNR 20 SNR 15 SNR 10 SNR 5 SNR 0 SNR -5

SNR (dB)

W
or

d 
ac

cu
ra

cy
 (%

)

Unquantized feature Aurora quantized feature SVD quantized feature

International Journal of Information and Electronics Engineering, Vol. 3, No. 5, September 2013

539

Fig. 5. SNR measurements (Test set B). 

Fig. 8.Word accuracy before and 



  

TABLE V: WORD ACCURACY AVERAGE (0 – 20 DB), FOR TEST SETS (A, B, 
AND C) 

Set Training 
mode 

Unquantized 
Aurora 

Quantized 
Aurora 

Quantized 
SVD 

A 
Clean 67.62 66.65 67.03 
Multi-Cond
ition 89.60 89.58 87.46 

 Clean 62.96 62.29 63.25 

B Multi-Cond
ition 88.31 87.91 88.00 

 Clean 71.62 69.80 70.58 

C Multi-Cond
ition 86.24 85.30 84.56 

 

V. CONCLUSION AND FURTHER WORK 
In the proposed SVD algorithm we focused on reducing 

the bit-ratearound 3500 bps. Generally this source encoder 
maintains the same recognition performance comparing with 
the conventional ETSI Auroraencoder working at 4400 bps, 
with relatively more computational cost. In addition, the 
proposed technique can be extended to compress othertypes 
of parameters like LPCcoefficients. Further work will 
involve improving both computational cost by proposing a 
new quantization techniques for the SVD vectors and 
recognition performance.  
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