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Abstract—Time course data may inherit critical temporal 

ordering in contiguous (i.e., neighboring) time slot. Traditional 

one-way k-means clustering algorithms handle time points 

independently, ignoring the internal time locality. Although 

co-clustering algorithms can discover latent local patterns, the 

discovered patterns are not necessary to be in a continuous time 

order. Therefore, this paper targets to extend an existing 

co-clustering framework to be applicable to time course data so 

that time-dependent local segment patterns over specific 

intervals can be captured. While following the general 

co-clustering framework of the alternating optimization process, 

the proposed algorithms employ clustering on instance 

dimension and segmentation on time dimension. Both batch and 

incremental updates at boundary time points are proposed to 

search for a sequence of time segments. Eight time course 

datasets and two specific data normalization schemes are 

considered in the experimental study.  Clustering similarity 

performance among k-means, one existing co-clustering, and 

the two proposed clustering segmentation algorithms is 

compared. 

 
Index Terms—Co-clustering, segmentation, pattern 

discovery, time-course data.  

 

I. INTRODUCTION 

The common characteristic of time-course datasets such as 

cell cycle data, sensor network data, and weather data is that 

there may exist critical continuity latent between neighboring 

time periods (i.e., time order or time locality). Accordingly, 

the main task in time course data analysis is to discover data 

points that express similar profiles in a certain contiguous 

sub-interval of the given time-course. Traditional one-way 

clustering algorithms are not appropriate for this purpose, 

because they treat the sampling at each time point as obtained 

under an independent experimental condition, thereby 

ignoring the internal sequential continuous relationship 

hidden between time points. 

In addition, the focus of most existing co-clustering 

algorithms (see [1]) is to discover latent local patterns, not 

necessarily required to be contiguous over time. Finding 

latent local pattern is considered to be the main desirable 

characteristic of co-clustering. However, critical latent local 

patterns existing over continuous local time intervals may not 

be captured using traditional co-clustering approaches, yet. 

To address this, a couple of ideas were proposed to equip 

co-clustering algorithms with the functionality of discovery 

of the local patterns in gene expression datasets:  

CC-TSB (CC Time-Series Biclustering): Based on 
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Cheng and Church [2], Zhang et al. [3] proposed a 

deletion-based biclustering algorithm to coregulated genes 

showing similar expression profiles in certain sub-interval of 

the time course. The time locality is preserved through 

constraining the set of time points eligible for deletion. 

CCC-Biclustering algorithms: Madeira et al. [1], [4] 

proposed a linear time algorithm that uses a discretized 

matrix and efficient string processing techniques based on 

suffix trees. Also, e-CCC-Biclustering was proposed to find 

CCC-Biclusters with up to a given number of errors per gene 

in their expression pattern [5]. 

These approaches are of simple generalization of the 

biclustering algorithm by Cheng and Church [2], and hence 

the applicability of their proposed approaches is limited. 

They share a common idea of keeping track of boundary time 

points so as to preserve time locality. In this paper, we 

employ this idea to the general co-clustering framework and 

develop Clustering Segmentation algorithm (Algorithm 1) 

that performs row (or column) clustering followed by column 

(or row) segmentation for a given time-course data. The 

proposed algorithm preserves the time locality by keeping 

track of the border time points in each co-cluster by 

efficiently updating cluster labels of the boundary time points 

through the local search strategy, originated from [6], [7]. 

Furthermore, this paper considers the effect of different data 

transformations of time-course datasets. Unlike the 

traditional co-clustering algorithms that target to cluster both 

dimensions, the proposed approach is to perform 

segmentation of time dimension, while clustering the other 

dimension. The proposed approach is generic; thus, it can be 

applicable to existing co-clustering algorithms, including all 

the algorithms in the Bregman Co-clustering (BCC) 

framework [8]. 

The rest of this paper is organized as follows: In section II, 

we define notations and the general co-clustering framework 

used in the paper. In Section III, we discuss detailed steps of 

the proposed algorithm, where two variations of the 

algorithm are explained. In  Section III, we compare the 

experimental results of k-means, traditional co-clustering, 

and the proposed approach on the benchmark time course 

datasets. In  Section V, we conclude with summary and 

remark. 

 

II. BACKGROUND 

A. Notations 

Upper-case boldfaced letters such as X and A denote 

matrices. Xi⋅ and X.j denote row i and column j of matrix X, 

respectively, and Xij (or x
ij
) denotes the (i,j)-th element of 

matrix X. Upper-case letters I and J (or otherwise subscripted) 
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denote row and column index sets of a co-cluster AIJ, and |I | 

and |J| denote the cardinality of index set I and index set J, 

respectively. The norm X  denotes the Frobenius norm of 

matrix X, i.e., 
2

=X ∑ij |xij
2|. The symbols ℝ, ℝd, and ℝm×n 

denote the set of reals, the d-dimensional real vector space, 

and the m×n real matrix space, respectively.   

The data matrix A ∈ ℝm×n, whose (i,j)-th element is 

denoted by a
ij
, is defined as follows: 

11 12 1

21 22 2
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n
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a a a

a a a
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We partition A into k row clusters and ℓ column clusters 

defined by the following functions , 

   : 1,2, , 1,2, , ,m k       (1) 

   : 1,2, , 1,2, , ,n        (2) 

where ρ(i) = r implies that row i is in row cluster r and 

similarly γ(j) = c implies that column j is in column cluster c. 

As defined previously, let I denote the set of indices of rows 

in a row cluster and J denote the set of indices of columns in a 

column cluster. The submatrix of A determined by I and J, 

denoted as AIJ, is called a co-cluster.  

B. Definitions 

1) Cluster Indicator Matrix: Assume 
rm rows belong to 

row-cluster γ (1 ≤ r ≤ k), so that ∑rmr = m. Similarly, 

cn rows belong to column-cluster c (1 ≤ c ≤ ℓ), so that 

∑cnc = n. Then, we define a row cluster indicator matrix, 

R ∈ ℝm×k and a column cluster indicator matrix, C ∈ 
ℝm×ℓ as follows: column r of R has mr non-zeros, each of 

which equals mr
-1/2, the non-zeros of C are defined 

similarly. Without loss of generality, we assume that the 

rows that belong to a particular cluster are contiguous 

and so are the columns. Then the matrix R may have the 

form, 
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where the first column has m1 non-zeros, the second column 

has m2 non-zeros, and the last k-th column has mk non-zeros, 

which can be either consecutive or not. Matrix C has a similar 

structure. Therefore, 
2

rr 1
= m


R  and 

2

cc 1
= n


C . Note that 

R and C are column orthonormal matrices since the columns 

of R and C are clearly orthogonal and ∥R⋅r∥2 = 1 and ∥C⋅c∥2 = 

1. Using these definitions of R and C, we can write both the 

residues compactly in the matrix form as follows. 

2) Residue: In order to evaluate the quality of such a 

co-cluster, two measures have been considered, each of 

which targets to capture either “homogeneity” or “trend” 

of data as discussed in [6], [9]. 

 The sum of squared differences between each entry in 

the co-cluster and the mean of the co-cluster. 

 The sum of squared differences between each entry in 

the co-cluster and the corresponding row mean and the 

column mean. The co-cluster mean is to be added to 

retain symmetry. 

We define the residue of an element aij in the co-cluster 

determined by index sets I and J to be 

               ij ij IJ
h a a                    for basis 2,                   (3) 

               ij ij iJ Ij IJ
h a a a a     for basis 6,                    (4) 

where aiJ = Σj∈J aij/|J| is the mean of the entries in row i whose 

column indices are in J, aIj = Σi∈I aIj / |I| is the mean of the 

entries in column j whose row indices are in I, and aIJ  =  

Σi∈I,j∈J aIJ / |I||J| is the mean of all the entries in the co-cluster, 

where |I| and |J| denote the cardinality of I and J. (3) was the 

measure used by Hartigan [10]. It is also related to the first 

residue in [6], [9], and basis 2 in [8]. (4) was used by Cheng 

and Church [2]. It is also related to the second residue in [6], 

[9] and basis 6 in [8]. 

3) Residue Matrix: Suppose H = [hij], where hij is defined in 

(3) or (4), and R and C are the cluster indicator matrices 

as defined above. Then, we have 

  T T
H A RR ACC                for (3),       (5) 

    
TTH A I CCI RR   for (4).                 (6) 

As shown in [6], [9], the rows of RR
T
A give the row 

cluster mean vectors. In a similar fashion we have that 

(ACC
T)ij = aiJ and (RR

T
ACC

T)ij = aIJ, where i ∈ I and  j ∈ J. 

C. Minimum-Sum Squared Residue Co-Clustering 

The residue matrix H leads to the following objective 

function for minimizing squared residues: find both row and 

column clusters simultaneously such that ∥H∥2 = ΣI,J ∥HIJ∥
2 is 

minimized. In other words, our optimization problem is to 

minimize the total squared residue of the objective function, 

2
22

IJ

I,J I,J i I, j J

ij= = h
 

  HH , 

where HIJ is the co-cluster induced by I and J. The following 

toy example provides some insight into the different residue 

measures defined in (3) and (4). 

For each definition of H, we get a corresponding residue 

minimization problem, called Minimum-Sum Squared 

Residue Co-clustering (MSSRCC) [6], [9], [11]. We refer to 

these minimization problems as our first and second 

problems, respectively. When R and C are constrained to be 

cluster indicator matrices as in our case, the problem of 

obtaining the global minimum for ∥H∥ is NP-hard. Therefore, 

we resort to iterative algorithms that monotonically decrease 

the objective functions and converge to a local minimum. 
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III. CLUSTERING SEGMENTATION 

Let us consider the data matrix whose rows and columns 

consist of objects and time-courses, respectively. Therefore, 

we do not claim rows in row cluster r (i.e., r-th column in R 

defined in (II-B1)) to be consecutive, while requiring 

columns in column cluster c (i.e., c-th column in C) to be 

consecutive in order to ensure the time locality of 

time-courses. Therefore, different from R, C should have the 

following form, 
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where each co-cluster consists of only one group of 

consecutive rows. As before, 
2

rr 1
= m


R

 
and 

2

cc 1
= n


C , 

and
 
∥R⋅r∥2

 
= 1 and ∥C⋅c∥2

 
= 1. In summary, both R

 
and C

 
are 

column orthonormal matrices, however non-zeros in R
 
are 

not necessarily consecutive but those in C
 
are required to be 

consecutive, which will guarantee to preserve the time 

locality of the considered time course (i.e., consecutive 

columns
 
in the example).

 

As defined in (1)
 
and (2), ρ

 
is a mapping from the m

 
rows 

to the k
 
row clusters and γ

 
is a mapping from the n

 
columns to 

the ℓ
 
column segments. Note that there exist

 
no restrictions 

on ρ, while γ
 
is

 
constrained to ensure that the ordering of the 

time intervals is retained as in the column segment indicator 

matrix C. Accordingly, γ should be of the form,  j 
 

that satisfies 1 j n  , 1   , and
 

   first j last   , where
 

 first 
 
and  last 

 
return

 

the first column index
 
and

 
the last column index of  column 

cluster  , respectively.
 

 

Algorithm
 
1:

 
Bregman

 
Clustering

 
Segmentation

 
(BCS)

 

BCS(A,
 
k,

 
ℓ,

 
ρ,

 
γ)

 

Input:
 
Data

 
matrix

 
A ∈ ℝm×n,

 
number

 
of

 
row

 
clusters k,

 

number
 
of

 
column

 
segments

 
ℓ,

 
and

 
cluster indicator

 

vectors
 
ρ
 
∈

 
{1,

 
·
 
·
 
·
 
,
 
k}

 
and

 
γ
 
∈

 
{1,

 
·
 
·
 
·
 
,
 
ℓ}n×1

 

Output:
 
Cluster

 
indicator

 
vectors

 
ρ
 
and

 
γ

 

begin
 

Initialize
 
cluster

 
assignment

 
of

 
ρ
 
and

 
γ;

 

R
 
Update

 
using

 
initial

 
ρ;

 

C
 
Update

 
using

 
initial

 
ρ;

 

2310  A ;
 

newobj Update
 
the

 
target

 
objective

 
function;

 

oldobj
 
 newobj

 
+

 
τ
 
+

 
1;

 

while
 
|oldobj

 
−

 
newobj|

 
>

 
τ 

 
do

 

RowClusterUpdate
 
(A,

 
k,

 
ℓ,

 
ρ,

 
R ,  C );

 

R
 
Update

 
using

 
new

 
ρ;

 

ColSegmentUpdate
 
(A,

 
k,

 
ℓ,

 
γ ,

 
R ,  C );

 

C  Update using new ρ; 

oldobj   newobj; 

newobj Update the target objective function; 

end 

end 

 

Algorithm 2: Column Segment Update (Batch) 

ColSegmentUpdate (A, k, ℓ, γ , R, C) 

Input: Data matrix A ∈ ℝm×n, number of row clusters k, 

number of column segments ℓ, column cluster 
indicator vector γ ∈ {1, · · · , ℓ}n×1, row cluster 

indicator matrix R ∈ ℝm×k, and column cluster indicator 

matrix C ∈ ℝn×ℓ
 

Output: Column cluster indicator vector γ 

begin 
2510  A ;                                         /* Adjustable */ 

/* Gain of moving first to adjacent  column cluster */ 

for 2b   to ℓ do 

  1c first b   ; 

δfirst(b)  c   Compute gain;                       /* FIRST */ 

end 

/* Gain of moving last to adjacent  column cluster */ 

for 1b  to 1  do 

  1c last b   ; 

δlast(b)  c  Compute gain;                          /* LAST */ 

end 

/* Find the best column to move */ 

 
 

 * *

,

arg max ;, j
j c

j c c                                 /* BEST */ 

if  
j c *

* then 

  cj  ** ; 

end 

end 

 

Algorithm 3: Column Segment Update (Incremental) 

ColSegmentUpdate (A, k, ℓ, ρ, R, C) 

Input: Data matrix A ∈ ℝm×n, number of row clusters k, 

number of column segments ℓ, column cluster 
indicator vector γ ∈ {1, · · · , ℓ}n×1, row cluster 

indicator matrix R ∈ ℝm×k, and column cluster indicator 

matrix C ∈ ℝn×ℓ
 

Output: Column cluster indicator vector γ 

begin 
2510  A ;                                         /* Adjustable */ 

/* Gain of moving first and last to adjacent  column cluster 

*/ 

for 1b  to 1  do 

  11c first b   ; 

δfirst(b+1)  c   Compute gain;                      /* FIRST */ 

  1c last b   ; 

δlast(b)  c  Compute gain;                          /* LAST */ 

if δlast(b)  c   δfirst(b+1)  c then  

 1j first b 
*

;               /*FIRST move is 

better.*/ 

c c*
; 

end 

if δlast(b)  c   δfirst(b+1)  c then   

 j last b*
;                    /*LAST move is better.*/ 
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c c* ; 

end 

if  
j c *

* then 

  cj  ** ; 

end 

end 

end 

 

The overall process of the proposed Bregman Clustering 

Segmentation (BCS) described in Algorithm 1 resembles the 

general framework of both the MSSRCC [6] and the BCC [8]. 

The BCS algorithm begins out with some initialization of 

both the indicator matrices, R and C, and then it iterates till 

the decrease in the objective function value becomes small as 

governed by the tolerance factor τ. Each iteration of the BCS 

consists of the alternating optimization process between 

clustering of all rows of data matrix and segmentation of only 

columns at segment boundaries. It is worth noting that 

RowClusterUpdate() of Algorithm 1 is equivalent to the 

batch greedy assignment/update step in both the MSSRCC [6] 

and the BCC [8]. RowClusterUpdate() updates the 

cluster indicator vector ρ for all the rows so that every row is 

assigned to its closest row cluster. Such greedy row cluster 

update decreases the objective function at each iteration and 

improves the row clustering as proved in [6], [8]. 

In contrast, ColSegmentUpdate() cannot simply 

assign every column to the closest column segment, since we 

want to ensure that the time points (i.e., columns) are not 

permuted. It can start with the simple initialization that 

randomly selects ℓ–1 time points in order to divide the 

columns into ℓ segments and then only the time points (i.e., 

columns) at the segment boundaries are investigated by 

employing the similar greedy local search strategy with the 

gain value defined in [7], [9]. Note that the gain is defined as 

the change of objective function value by moving one 

boundary point into one of the two neighboring segments. In 

this paper, we develop two strategies for such column 

segmentation update. The first strategy is the batch update 

described in Algorithm 2, where gains of all the boundary 

points are computed and the segment assignment of the best 

column is updated, if the best gain is above the specified 

threshold. The second strategy is the incremental update 

described in Algorithm 3, where gains of every boundary 

data point are computed and its segment is incrementally 

updated to one of its neighboring segment, if the gain of its 

move is above the specified threshold.  

Notice that first(1) has no neighboring left column cluster 

0 to move to and last(ℓ) has no right column cluster ℓ + 1 to 

move to. After computing all the possible 2(ℓ  1) gains, 

Algorithm 2 updates the segment assignment only for the one 

move that leads to the best (i.e., maximum) gain out of 2(ℓ  1) 

gains. However, one call of Algorithm 3 can update up to ℓ 

segment assignments, since either left or right move can be 

incrementally selected for each column segment.    

Both Algorithms 2 and 3 can be applicable to all the 

algorithms in the BCC framework (see [8]), if we can 

efficiently compute the gain of moving a data point to another 

column segment (i.e., /*FIRST*/ and /*LAST*/) in 

Algorithm 2 and “Compute gain” step in Algorithm 3. 

Furthermore, both can adopt the chain of the incremental 

local search strategy in [7], [9] to escape from poor local 

minima. 

 

IV. EXPERIMENTAL RESULTS 

A. Time Course Data 

Time course data consists of observations on variable(s) 

over time (i.e., stochastic process) and has particular 

characteristics: (1) Temporal ordering is important and thus 

past can affect the future, but not vice versa; (2) Observations 

can rarely be assumed to be independent over time; and (3) A 

particular time course data is one possible outcome of the 

stochastic process. Therefore, keeping temporal locality has 

an importance issue in time course data analysis. Because of 

this requirement, time course data analysis is not a trivial 

problem. There exist two goals in time course data analysis: 

(1) identifying the nature of the phenomenon represented by 

the sequence of observations over time and (2) predicting 

future values of the time course variable. In this paper, we are 

interested in identifying the time-dependent latent local 

patterns from a given time course data 

The eight time-course datasets used as benchmark time 

course datasets are summarized in Table I. The datasets were 

collected from the UCR Time Series 

Classification/Clustering page at 

http://www.cs.ucr.edu/~eamonn/time_series_data/. Note that 

each dataset was split into training and test sets because the 

original purpose of the datasets was to do classification. 

However, for our experimental study, we combine them 

together for the purpose of k-means clustering, co-clustering, 

and BCS.  

 
TABLE I: TIME COURSE DATASETS USED IN OUR EXPERIMENTS 

Dataset Classes Size Length Segments 

Synthetic Control 6 600 60 10 

Gun Point 2 200 150 2 

CBF 3 930 128 5 

Face All 14 2250 131 20 

Trace 4 200 275 3 

Face Four 4 112 350 20 

Lighting2 2 121 637 2 

Lighting7 7 143 319 5 

 

B. Data Normalization 

In our previous research [11], [12], we analyzed the effect 

of data transformations on the MSSRCC and BCC 

frameworks and also showed the empirical result that 

supports the analysis. Therefore, following the suggestion 

in [11], [12], we apply the two specific data transformations, 

Z-score transformation (ZT) and bispherical normalization 

(NBIN), to every dataset in Table I. The two data 

normalization are summarized below.  

1) (Column/Row) Z-score Transformation (ZT): Column 

standardization is defined as aij = (aij – a⋅j) / σ⋅j  for i = 1, 

⋯, m and j = 1, ⋯, n. Row standardization is defined 

similarly with ai⋅ and σi⋅. It is also called “autoscaling”, 

where the measurements are scaled so that each 

column/row has a zero mean and a unit variance [13]. 

Through ZT, the relative variation in intensity is 

emphasized, since ZT is a linear transformation, which 
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keeps the relative positions of observations and the shape of the original distribution. 

 

  

  

 
 

  
Fig. 1. Comparison of similarity performance with different data transformations and clustering algorithms. Two data transformations (ZT for (column) 

Z-score transformation and NBIN for bispherical normalization) and four clustering algorithms (k-means, BCC for Bregman Co-clustering, BCS (incremental) 

and BCS (batch) for Bregman Clustering Segmentation with incremental update and with batch update, respectively) are considered. Similarity values are 

averaged over 20 random runs. 

 

2) Binormalization (NBIN): Livne and Golub [14] 

presented iterative algorithms (called BIN for a square 

matrix and NBIN for a rectangle matrix) for scaling all 

the rows and columns of a square (rectangle) matrix to 
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have unit (same) L2-norm. Binormalization of a 

rectangular matrix through NBIN results in Σjaij
2 = n for i 

= 1, ⋯, m, and Σi aij
2 = m for j = 1, ⋯, n. The effect is a 

bi-sphericalization, where the rows as well as the 

columns are forced to lie on hyperspheres with radii n  

and m , respectively. 

Note that we apply column ZT to make each data point 

have mean 0 and variance 1 over the considered time points 

(see [11], [12] for details of data transformations). Note basis 

2 is employed for BCC and BCS algorithms, however other 

bases in [8] can be directly applicable. Fixing number of row 

clusters (i.e. k) to the size of true class labels for each dataset, 

we vary number of column segmentations (i.e., ℓ), until it 

leads to comparable performance with k-means. In Table I, 

we specify the number of column clusters resulted from the 

above mentioned search process. 

C. Similarity Measure 

We compare the performance of our BCS algorithms (i.e., 

Algorithms 2 and 3) with those of typical one-way k-means 

and the BCC algorithm [8]. Since all the considered time 

course datasets have their class labels (i.e., “ground-truth”), 

external evaluation measures can be applicable. In our 

experiments, we use similarity proposed by Gavrilov et 

al. [15] as follows: Given the given clustering 

1 2 k
C C C C  (i.e., “ground-truth”) and the clustering 

1 2 k
C C C C   

 (i.e., cluster labels), 

   
1

,max, i j
j

i

C Csimilarity similarityC C
k

   , 

where  ( , ) 2 i j ji j i
C C Csimilarity C C C    . Note that 

( , )similarity C C  will return 0 if both the given clustering and 

the obtained one are completely different, and 1 if they are 

identical. Since the measure is not symmetric, we always use 

the “ground-truth” clustering as the first parameter. 

D. Observation and Summary 

From our experiments, we observe the following 

characteristics of the proposed BCS algorithms: 

 For some datasets, including Synthetic Control (with 

both ZT and NBIN), Face All (with ZT), Trace (with 

both ZT and NBIN), Lighting2 (with both ZT and 

NBIN), and Lighting7 (with NBIN), BCC leads to the 

worst similarity. We attribute the deteriorated 

performance with BCC to the locality of the considered 

time course datasets. Note that BCC permutes the order 

of both data points and features through the co-clustering 

process and hence it might break critical latent temporal 

ordering existing over continuous local time intervals of 

some of the datasets. Note that normal k-means is not 

sensitive to the order of time points in nature and the 

proposed BCS algorithms preserve the temporal order on 

purpose.  

 For all the considered time course datasets, BCS with ZT 

and BCS with NBIN perform better. However, much 

difference in performance between incremental and 

batch versions of BCS is not observed. 

 Interestingly, Face Four (with ZT) and Lighting7 (with 

NBIN) perform best with k-means, while Face Four 

(with NBIN) and Lighting7 (with ZT) perform best with 

the BCS algorithms. 

 Except Synthetic Control, CBF, and Lighting7, BCS 

with NBIN performs best. It was also shown in [11], [12] 

that BCC worked well with NBIN. Similarly, BCS 

matches reasonably well with NBIN in our experiments. 

These experimental results support that the proposed BCS 

algorithms can discover latent local patterns existing over 

continuous local time intervals and data transformations also 

affect the overall performance of the BCS algorithms, as for 

the BCC algorithms in our previous study (see [11], [12]). 

 

V. CONCLUSION AND REMARKS 

We presented the clustering and segment performance of 

BBC and BCS with basis 2 in the MSSRCC and the BCS 

frameworks in Algorithm 1. In our preliminary research, we 

also witnessed that the proposed algorithms with other bases 

in [8] performed well with various parameter settings (not 

reported in this paper). Hence, it would be worthwhile to 

further investigate detailed performance with other bases. 

We demonstrated the effect of the two data normalizations, 

ZT and NBIN on the similarity performance of the 

considered algorithms. Therefore, it would be desirable to 

include more data preprocessing techniques, e.g., [16], [17], 

[18], and more external evaluation measures. 

Visual inspection of the segments may be interesting to 

pursue, as it is a simple way to verify whether the resulted 

segments preserve the inherent characteristics of the 

considered bases. For example, as shown in  [6], [11], if 

segments contain uniform valued patterns, basis 2 should 

discover these uniform patterns; if segments express some 

trends, basis 6 should successfully capture these trends. 

Note that the performance reported here is not optimal 

since we did not apply any sophisticated methods to find 

optimal parameter values. Therefore, with tailored model 

selection approaches, the clustering and segment 

performance may be further improved. 
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