



Abstract—Time course data may inherit critical temporal

ordering in contiguous (i.e., neighboring) time slot. Traditional

one-way k-means clustering algorithms handle time points

independently, ignoring the internal time locality. Although

co-clustering algorithms can discover latent local patterns, the

discovered patterns are not necessary to be in a continuous time

order. Therefore, this paper targets to extend an existing

co-clustering framework to be applicable to time course data so

that time-dependent local segment patterns over specific

intervals can be captured. While following the general

co-clustering framework of the alternating optimization process,

the proposed algorithms employ clustering on instance

dimension and segmentation on time dimension. Both batch and

incremental updates at boundary time points are proposed to

search for a sequence of time segments. Eight time course

datasets and two specific data normalization schemes are

considered in the experimental study. Clustering similarity

performance among k-means, one existing co-clustering, and

the two proposed clustering segmentation algorithms is

compared.

Index Terms—Co-clustering, segmentation, pattern

discovery, time-course data.

I. INTRODUCTION

The common characteristic of time-course datasets such as

cell cycle data, sensor network data, and weather data is that

there may exist critical continuity latent between neighboring

time periods (i.e., time order or time locality). Accordingly,

the main task in time course data analysis is to discover data

points that express similar profiles in a certain contiguous

sub-interval of the given time-course. Traditional one-way

clustering algorithms are not appropriate for this purpose,

because they treat the sampling at each time point as obtained

under an independent experimental condition, thereby

ignoring the internal sequential continuous relationship

hidden between time points.

In addition, the focus of most existing co-clustering

algorithms (see [1]) is to discover latent local patterns, not

necessarily required to be contiguous over time. Finding

latent local pattern is considered to be the main desirable

characteristic of co-clustering. However, critical latent local

patterns existing over continuous local time intervals may not

be captured using traditional co-clustering approaches, yet.

To address this, a couple of ideas were proposed to equip

co-clustering algorithms with the functionality of discovery

of the local patterns in gene expression datasets:

CC-TSB (CC Time-Series Biclustering): Based on

Manuscript received April 15, 2014; revised June 15, 2014.

H. Cho and M. K. An are with the Department of Computer Science, Sam

Houston State University, Huntsville, Texas, USA (e-mail:

hyukcho@shsu.com, an@shsu.com).

Cheng and Church [2], Zhang et al. [3] proposed a

deletion-based biclustering algorithm to coregulated genes

showing similar expression profiles in certain sub-interval of

the time course. The time locality is preserved through

constraining the set of time points eligible for deletion.

CCC-Biclustering algorithms: Madeira et al. [1], [4]

proposed a linear time algorithm that uses a discretized

matrix and efficient string processing techniques based on

suffix trees. Also, e-CCC-Biclustering was proposed to find

CCC-Biclusters with up to a given number of errors per gene

in their expression pattern [5].

These approaches are of simple generalization of the

biclustering algorithm by Cheng and Church [2], and hence

the applicability of their proposed approaches is limited.

They share a common idea of keeping track of boundary time

points so as to preserve time locality. In this paper, we

employ this idea to the general co-clustering framework and

develop Clustering Segmentation algorithm (Algorithm 1)

that performs row (or column) clustering followed by column

(or row) segmentation for a given time-course data. The

proposed algorithm preserves the time locality by keeping

track of the border time points in each co-cluster by

efficiently updating cluster labels of the boundary time points

through the local search strategy, originated from [6], [7].

Furthermore, this paper considers the effect of different data

transformations of time-course datasets. Unlike the

traditional co-clustering algorithms that target to cluster both

dimensions, the proposed approach is to perform

segmentation of time dimension, while clustering the other

dimension. The proposed approach is generic; thus, it can be

applicable to existing co-clustering algorithms, including all

the algorithms in the Bregman Co-clustering (BCC)

framework [8].

The rest of this paper is organized as follows: In section II,

we define notations and the general co-clustering framework

used in the paper. In Section III, we discuss detailed steps of

the proposed algorithm, where two variations of the

algorithm are explained. In Section III, we compare the

experimental results of k-means, traditional co-clustering,

and the proposed approach on the benchmark time course

datasets. In Section V, we conclude with summary and

remark.

II. BACKGROUND

A. Notations

Upper-case boldfaced letters such as X and A denote

matrices. Xi⋅ and X.j denote row i and column j of matrix X,

respectively, and Xij (or x
ij
) denotes the (i,j)-th element of

matrix X. Upper-case letters I and J (or otherwise subscripted)

Co-Clustering-Based Clustering and Segmentation for

Pattern Discovery from Time Course Data

Hyuk Cho and Min Kyung An

International Journal of Information and Electronics Engineering, Vol. 4, No. 5, September 2014

358DOI: 10.7763/IJIEE.2014.V4.464

denote row and column index sets of a co-cluster AIJ, and |I |

and |J| denote the cardinality of index set I and index set J,

respectively. The norm X denotes the Frobenius norm of

matrix X, i.e.,
2

=X ∑ij |xij
2|. The symbols ℝ, ℝd, and ℝm×n

denote the set of reals, the d-dimensional real vector space,

and the m×n real matrix space, respectively.

The data matrix A ∈ ℝm×n, whose (i,j)-th element is

denoted by a
ij
, is defined as follows:

11 12 1

21 22 2

1 2

n

n

m m mn

a a a

a a a

a a a



 
 
 
 
 
 

A .

We partition A into k row clusters and ℓ column clusters

defined by the following functions ,

   : 1,2, , 1,2, , ,m k  (1)

   : 1,2, , 1,2, , ,n  (2)

where ρ(i) = r implies that row i is in row cluster r and

similarly γ(j) = c implies that column j is in column cluster c.

As defined previously, let I denote the set of indices of rows

in a row cluster and J denote the set of indices of columns in a

column cluster. The submatrix of A determined by I and J,

denoted as AIJ, is called a co-cluster.

B. Definitions

1) Cluster Indicator Matrix: Assume
rm rows belong to

row-cluster γ (1 ≤ r ≤ k), so that ∑rmr = m. Similarly,

cn rows belong to column-cluster c (1 ≤ c ≤ ℓ), so that

∑cnc = n. Then, we define a row cluster indicator matrix,

R ∈ ℝm×k and a column cluster indicator matrix, C ∈
ℝm×ℓ as follows: column r of R has mr non-zeros, each of

which equals mr
-1/2, the non-zeros of C are defined

similarly. Without loss of generality, we assume that the

rows that belong to a particular cluster are contiguous

and so are the columns. Then the matrix R may have the

form,

1 2

1

1 2

1 2

2

1 2

2

1 2

1

1 2

0 0

0 0

0 0

0 0

0 0

0 0

k

k

m

m

m

m

m

m















 
 
 
 
 
 
 
 
 
 
 
 
 

/

/

/

/

/

/

R ,

where the first column has m1 non-zeros, the second column

has m2 non-zeros, and the last k-th column has mk non-zeros,

which can be either consecutive or not. Matrix C has a similar

structure. Therefore,
2

rr 1
= m


R and

2

cc 1
= n


C . Note that

R and C are column orthonormal matrices since the columns

of R and C are clearly orthogonal and ∥R⋅r∥2 = 1 and ∥C⋅c∥2 =

1. Using these definitions of R and C, we can write both the

residues compactly in the matrix form as follows.

2) Residue: In order to evaluate the quality of such a

co-cluster, two measures have been considered, each of

which targets to capture either “homogeneity” or “trend”

of data as discussed in [6], [9].

 The sum of squared differences between each entry in

the co-cluster and the mean of the co-cluster.

 The sum of squared differences between each entry in

the co-cluster and the corresponding row mean and the

column mean. The co-cluster mean is to be added to

retain symmetry.

We define the residue of an element aij in the co-cluster

determined by index sets I and J to be

 ij ij IJ
h a a  for basis 2, (3)

 ij ij iJ Ij IJ
h a a a a    for basis 6, (4)

where aiJ = Σj∈J aij/|J| is the mean of the entries in row i whose

column indices are in J, aIj = Σi∈I aIj / |I| is the mean of the

entries in column j whose row indices are in I, and aIJ =

Σi∈I,j∈J aIJ / |I||J| is the mean of all the entries in the co-cluster,

where |I| and |J| denote the cardinality of I and J. (3) was the

measure used by Hartigan [10]. It is also related to the first

residue in [6], [9], and basis 2 in [8]. (4) was used by Cheng

and Church [2]. It is also related to the second residue in [6],

[9] and basis 6 in [8].

3) Residue Matrix: Suppose H = [hij], where hij is defined in

(3) or (4), and R and C are the cluster indicator matrices

as defined above. Then, we have

  T T
H A RR ACC for (3), (5)

    
TTH A I CCI RR for (4). (6)

As shown in [6], [9], the rows of RR
T
A give the row

cluster mean vectors. In a similar fashion we have that

(ACC
T)ij = aiJ and (RR

T
ACC

T)ij = aIJ, where i ∈ I and j ∈ J.

C. Minimum-Sum Squared Residue Co-Clustering

The residue matrix H leads to the following objective

function for minimizing squared residues: find both row and

column clusters simultaneously such that ∥H∥2 = ΣI,J ∥HIJ∥
2 is

minimized. In other words, our optimization problem is to

minimize the total squared residue of the objective function,

2
22

IJ

I,J I,J i I, j J

ij= = h
 

  HH ,

where HIJ is the co-cluster induced by I and J. The following

toy example provides some insight into the different residue

measures defined in (3) and (4).

For each definition of H, we get a corresponding residue

minimization problem, called Minimum-Sum Squared

Residue Co-clustering (MSSRCC) [6], [9], [11]. We refer to

these minimization problems as our first and second

problems, respectively. When R and C are constrained to be

cluster indicator matrices as in our case, the problem of

obtaining the global minimum for ∥H∥ is NP-hard. Therefore,

we resort to iterative algorithms that monotonically decrease

the objective functions and converge to a local minimum.

International Journal of Information and Electronics Engineering, Vol. 4, No. 5, September 2014

359

III. CLUSTERING SEGMENTATION

Let us consider the data matrix whose rows and columns

consist of objects and time-courses, respectively. Therefore,

we do not claim rows in row cluster r (i.e., r-th column in R

defined in (II-B1)) to be consecutive, while requiring

columns in column cluster c (i.e., c-th column in C) to be

consecutive in order to ensure the time locality of

time-courses. Therefore, different from R, C should have the

following form,

1 2

1

1 2

1

1 2

1

1 2

1 2

1 2

2

1 2

2

0 0

0 0

0 0

0 0

0 0

0 0

0 0

n

n

n

n

n

n

n















 
 
 
 
 
 
 
 
 
 
 
 
  
 

/

/

/

/

/

/

/

C ,

where each co-cluster consists of only one group of

consecutive rows. As before,
2

rr 1
= m


R

and

2

cc 1
= n


C ,

and

∥R⋅r∥2

= 1 and ∥C⋅c∥2

= 1. In summary, both R

and C

are

column orthonormal matrices, however non-zeros in R

are

not necessarily consecutive but those in C

are required to be

consecutive, which will guarantee to preserve the time

locality of the considered time course (i.e., consecutive

columns

in the example).

As defined in (1)

and (2), ρ

is a mapping from the m

rows

to the k

row clusters and γ

is a mapping from the n

columns to

the ℓ

column segments. Note that there exist

no restrictions

on ρ, while γ

is

constrained to ensure that the ordering of the

time intervals is retained as in the column segment indicator

matrix C. Accordingly, γ should be of the form,  j 

that satisfies 1 j n  , 1   , and

   first j last   , where

 first 

and  last 

return

the first column index

and

the last column index of column

cluster  , respectively.

Algorithm

1:

Bregman

Clustering

Segmentation

(BCS)

BCS(A,

k,

ℓ,

ρ,

γ)

Input:

Data

matrix

A ∈ ℝm×n,

number

of

row

clusters k,

number

of

column

segments

ℓ,

and

cluster indicator

vectors

ρ

∈

{1,

·

·

·

,

k}

and

γ

∈

{1,

·

·

·

,

ℓ}n×1

Output:

Cluster

indicator

vectors

ρ

and

γ

begin

Initialize

cluster

assignment

of

ρ

and

γ;

R

Update

using

initial

ρ;

C

Update

using

initial

ρ;

2310  A ;

newobj Update

the

target

objective

function;

oldobj

 newobj

+

τ

+

1;

while

|oldobj

−

newobj|

>

τ

do

RowClusterUpdate

(A,

k,

ℓ,

ρ,

R , C);

R

Update

using

new

ρ;

ColSegmentUpdate

(A,

k,

ℓ,

γ ,

R , C);

C  Update using new ρ;

oldobj  newobj;

newobj Update the target objective function;

end

end

Algorithm 2: Column Segment Update (Batch)

ColSegmentUpdate (A, k, ℓ, γ , R, C)

Input: Data matrix A ∈ ℝm×n, number of row clusters k,

number of column segments ℓ, column cluster
indicator vector γ ∈ {1, · · · , ℓ}n×1, row cluster

indicator matrix R ∈ ℝm×k, and column cluster indicator

matrix C ∈ ℝn×ℓ

Output: Column cluster indicator vector γ

begin
2510  A ; /* Adjustable */

/* Gain of moving first to adjacent column cluster */

for 2b  to ℓ do

  1c first b   ;

δfirst(b)  c  Compute gain; /* FIRST */

end

/* Gain of moving last to adjacent column cluster */

for 1b to 1 do

  1c last b   ;

δlast(b)  c  Compute gain; /* LAST */

end

/* Find the best column to move */

 
 

 * *

,

arg max ;, j
j c

j c c /* BEST */

if  
j c *

* then

  cj  ** ;

end

end

Algorithm 3: Column Segment Update (Incremental)

ColSegmentUpdate (A, k, ℓ, ρ, R, C)

Input: Data matrix A ∈ ℝm×n, number of row clusters k,

number of column segments ℓ, column cluster
indicator vector γ ∈ {1, · · · , ℓ}n×1, row cluster

indicator matrix R ∈ ℝm×k, and column cluster indicator

matrix C ∈ ℝn×ℓ

Output: Column cluster indicator vector γ

begin
2510  A ; /* Adjustable */

/* Gain of moving first and last to adjacent column cluster

*/

for 1b to 1 do

  11c first b   ;

δfirst(b+1)  c  Compute gain; /* FIRST */

  1c last b   ;

δlast(b)  c  Compute gain; /* LAST */

if δlast(b)  c  δfirst(b+1)  c then

 1j first b 
*

; /*FIRST move is

better.*/

c c*
;

end

if δlast(b)  c  δfirst(b+1)  c then

 j last b*
; /*LAST move is better.*/

International Journal of Information and Electronics Engineering, Vol. 4, No. 5, September 2014

360

c c* ;

end

if  
j c *

* then

  cj  ** ;

end

end

end

The overall process of the proposed Bregman Clustering

Segmentation (BCS) described in Algorithm 1 resembles the

general framework of both the MSSRCC [6] and the BCC [8].

The BCS algorithm begins out with some initialization of

both the indicator matrices, R and C, and then it iterates till

the decrease in the objective function value becomes small as

governed by the tolerance factor τ. Each iteration of the BCS

consists of the alternating optimization process between

clustering of all rows of data matrix and segmentation of only

columns at segment boundaries. It is worth noting that

RowClusterUpdate() of Algorithm 1 is equivalent to the

batch greedy assignment/update step in both the MSSRCC [6]

and the BCC [8]. RowClusterUpdate() updates the

cluster indicator vector ρ for all the rows so that every row is

assigned to its closest row cluster. Such greedy row cluster

update decreases the objective function at each iteration and

improves the row clustering as proved in [6], [8].

In contrast, ColSegmentUpdate() cannot simply

assign every column to the closest column segment, since we

want to ensure that the time points (i.e., columns) are not

permuted. It can start with the simple initialization that

randomly selects ℓ–1 time points in order to divide the

columns into ℓ segments and then only the time points (i.e.,

columns) at the segment boundaries are investigated by

employing the similar greedy local search strategy with the

gain value defined in [7], [9]. Note that the gain is defined as

the change of objective function value by moving one

boundary point into one of the two neighboring segments. In

this paper, we develop two strategies for such column

segmentation update. The first strategy is the batch update

described in Algorithm 2, where gains of all the boundary

points are computed and the segment assignment of the best

column is updated, if the best gain is above the specified

threshold. The second strategy is the incremental update

described in Algorithm 3, where gains of every boundary

data point are computed and its segment is incrementally

updated to one of its neighboring segment, if the gain of its

move is above the specified threshold.

Notice that first(1) has no neighboring left column cluster

0 to move to and last(ℓ) has no right column cluster ℓ + 1 to

move to. After computing all the possible 2(ℓ  1) gains,

Algorithm 2 updates the segment assignment only for the one

move that leads to the best (i.e., maximum) gain out of 2(ℓ  1)

gains. However, one call of Algorithm 3 can update up to ℓ

segment assignments, since either left or right move can be

incrementally selected for each column segment.

Both Algorithms 2 and 3 can be applicable to all the

algorithms in the BCC framework (see [8]), if we can

efficiently compute the gain of moving a data point to another

column segment (i.e., /*FIRST*/ and /*LAST*/) in

Algorithm 2 and “Compute gain” step in Algorithm 3.

Furthermore, both can adopt the chain of the incremental

local search strategy in [7], [9] to escape from poor local

minima.

IV. EXPERIMENTAL RESULTS

A. Time Course Data

Time course data consists of observations on variable(s)

over time (i.e., stochastic process) and has particular

characteristics: (1) Temporal ordering is important and thus

past can affect the future, but not vice versa; (2) Observations

can rarely be assumed to be independent over time; and (3) A

particular time course data is one possible outcome of the

stochastic process. Therefore, keeping temporal locality has

an importance issue in time course data analysis. Because of

this requirement, time course data analysis is not a trivial

problem. There exist two goals in time course data analysis:

(1) identifying the nature of the phenomenon represented by

the sequence of observations over time and (2) predicting

future values of the time course variable. In this paper, we are

interested in identifying the time-dependent latent local

patterns from a given time course data

The eight time-course datasets used as benchmark time

course datasets are summarized in Table I. The datasets were

collected from the UCR Time Series

Classification/Clustering page at

http://www.cs.ucr.edu/~eamonn/time_series_data/. Note that

each dataset was split into training and test sets because the

original purpose of the datasets was to do classification.

However, for our experimental study, we combine them

together for the purpose of k-means clustering, co-clustering,

and BCS.

TABLE I: TIME COURSE DATASETS USED IN OUR EXPERIMENTS

Dataset Classes Size Length Segments

Synthetic Control 6 600 60 10

Gun Point 2 200 150 2

CBF 3 930 128 5

Face All 14 2250 131 20

Trace 4 200 275 3

Face Four 4 112 350 20

Lighting2 2 121 637 2

Lighting7 7 143 319 5

B. Data Normalization

In our previous research [11], [12], we analyzed the effect

of data transformations on the MSSRCC and BCC

frameworks and also showed the empirical result that

supports the analysis. Therefore, following the suggestion

in [11], [12], we apply the two specific data transformations,

Z-score transformation (ZT) and bispherical normalization

(NBIN), to every dataset in Table I. The two data

normalization are summarized below.

1) (Column/Row) Z-score Transformation (ZT): Column

standardization is defined as aij = (aij – a⋅j) / σ⋅j for i = 1,

⋯, m and j = 1, ⋯, n. Row standardization is defined

similarly with ai⋅ and σi⋅. It is also called “autoscaling”,

where the measurements are scaled so that each

column/row has a zero mean and a unit variance [13].

Through ZT, the relative variation in intensity is

emphasized, since ZT is a linear transformation, which

International Journal of Information and Electronics Engineering, Vol. 4, No. 5, September 2014

361

keeps the relative positions of observations and the shape of the original distribution.

Fig. 1. Comparison of similarity performance with different data transformations and clustering algorithms. Two data transformations (ZT for (column)

Z-score transformation and NBIN for bispherical normalization) and four clustering algorithms (k-means, BCC for Bregman Co-clustering, BCS (incremental)

and BCS (batch) for Bregman Clustering Segmentation with incremental update and with batch update, respectively) are considered. Similarity values are

averaged over 20 random runs.

2) Binormalization (NBIN): Livne and Golub [14]

presented iterative algorithms (called BIN for a square

matrix and NBIN for a rectangle matrix) for scaling all

the rows and columns of a square (rectangle) matrix to

International Journal of Information and Electronics Engineering, Vol. 4, No. 5, September 2014

362

have unit (same) L2-norm. Binormalization of a

rectangular matrix through NBIN results in Σjaij
2 = n for i

= 1, ⋯, m, and Σi aij
2 = m for j = 1, ⋯, n. The effect is a

bi-sphericalization, where the rows as well as the

columns are forced to lie on hyperspheres with radii n

and m , respectively.

Note that we apply column ZT to make each data point

have mean 0 and variance 1 over the considered time points

(see [11], [12] for details of data transformations). Note basis

2 is employed for BCC and BCS algorithms, however other

bases in [8] can be directly applicable. Fixing number of row

clusters (i.e. k) to the size of true class labels for each dataset,

we vary number of column segmentations (i.e., ℓ), until it

leads to comparable performance with k-means. In Table I,

we specify the number of column clusters resulted from the

above mentioned search process.

C. Similarity Measure

We compare the performance of our BCS algorithms (i.e.,

Algorithms 2 and 3) with those of typical one-way k-means

and the BCC algorithm [8]. Since all the considered time

course datasets have their class labels (i.e., “ground-truth”),

external evaluation measures can be applicable. In our

experiments, we use similarity proposed by Gavrilov et

al. [15] as follows: Given the given clustering

1 2 k
C C C C (i.e., “ground-truth”) and the clustering

1 2 k
C C C C   

 (i.e., cluster labels),

   
1

,max, i j
j

i

C Csimilarity similarityC C
k

   ,

where  (,) 2 i j ji j i
C C Csimilarity C C C    . Note that

(,)similarity C C  will return 0 if both the given clustering and

the obtained one are completely different, and 1 if they are

identical. Since the measure is not symmetric, we always use

the “ground-truth” clustering as the first parameter.

D. Observation and Summary

From our experiments, we observe the following

characteristics of the proposed BCS algorithms:

 For some datasets, including Synthetic Control (with

both ZT and NBIN), Face All (with ZT), Trace (with

both ZT and NBIN), Lighting2 (with both ZT and

NBIN), and Lighting7 (with NBIN), BCC leads to the

worst similarity. We attribute the deteriorated

performance with BCC to the locality of the considered

time course datasets. Note that BCC permutes the order

of both data points and features through the co-clustering

process and hence it might break critical latent temporal

ordering existing over continuous local time intervals of

some of the datasets. Note that normal k-means is not

sensitive to the order of time points in nature and the

proposed BCS algorithms preserve the temporal order on

purpose.

 For all the considered time course datasets, BCS with ZT

and BCS with NBIN perform better. However, much

difference in performance between incremental and

batch versions of BCS is not observed.

 Interestingly, Face Four (with ZT) and Lighting7 (with

NBIN) perform best with k-means, while Face Four

(with NBIN) and Lighting7 (with ZT) perform best with

the BCS algorithms.

 Except Synthetic Control, CBF, and Lighting7, BCS

with NBIN performs best. It was also shown in [11], [12]

that BCC worked well with NBIN. Similarly, BCS

matches reasonably well with NBIN in our experiments.

These experimental results support that the proposed BCS

algorithms can discover latent local patterns existing over

continuous local time intervals and data transformations also

affect the overall performance of the BCS algorithms, as for

the BCC algorithms in our previous study (see [11], [12]).

V. CONCLUSION AND REMARKS

We presented the clustering and segment performance of

BBC and BCS with basis 2 in the MSSRCC and the BCS

frameworks in Algorithm 1. In our preliminary research, we

also witnessed that the proposed algorithms with other bases

in [8] performed well with various parameter settings (not

reported in this paper). Hence, it would be worthwhile to

further investigate detailed performance with other bases.

We demonstrated the effect of the two data normalizations,

ZT and NBIN on the similarity performance of the

considered algorithms. Therefore, it would be desirable to

include more data preprocessing techniques, e.g., [16], [17],

[18], and more external evaluation measures.

Visual inspection of the segments may be interesting to

pursue, as it is a simple way to verify whether the resulted

segments preserve the inherent characteristics of the

considered bases. For example, as shown in [6], [11], if

segments contain uniform valued patterns, basis 2 should

discover these uniform patterns; if segments express some

trends, basis 6 should successfully capture these trends.

Note that the performance reported here is not optimal

since we did not apply any sophisticated methods to find

optimal parameter values. Therefore, with tailored model

selection approaches, the clustering and segment

performance may be further improved.

REFERENCES

[1] S. C. Madeira, M. C. Teixeira, I. Sá-Correia, and A. L. Oliveira,

“Identification of regulatory modules in time series gene expression

data using a linear time biclustering algorithm,” IEEE Transactions on

Computational Biology and Bioinformatics, vol. 7, no. 1, pp. 153–165,

January-March 2010.

[2] Y. Cheng and G. M. Church, “Biclustering of expression data,” in Proc.

the 8th International Conference on Intelligent Systems for Molecular

Biology (ISMB’00), vol. 8, 2000, pp. 93–103.

[3] Y. Zhang, H. Zha, and C. Chu, “A time-series biclustering algorithm for

revealing co-regulated genes,” in Proc. International Conference on

Information Technology: Coding and Computation (ITCC’05), 2005,

pp. 32–37.

[4] S. C. Madeira and A. L. Oliveira, “A linear time biclustering algorithm

for time series gene expression data,” in Proc. the 5th Workshop on

Algorithms in Bioinformatics (WABI’05), 2005, pp. 39–52.

[5] S. C. Madeira and A. L. Oliveira, “An efficient biclustering algorithm

for finding genes with similar patterns in time-series expression data,”

in Proc. the 5th Asia-Pacific Bioinformatics Conference (APBC’07),

2007, pp. 67–80.

[6] H. Cho, I. S. Dhillon, Y. Guan, and S. Sra, “Minimum sum squared

residue based coclustering of gene expression data,” in Proc. the 4th

SIAM International Conference on Data Mining (SDM’04), 2004, pp.

114–125.

[7] I. S. Dhillon, Y. Guan, and J. Kogan, “Iterative clustering of high

dimensional text data augmented by local search,” in Proc. the 2nd

International Journal of Information and Electronics Engineering, Vol. 4, No. 5, September 2014

363

IEEE International Conference on Data Mining (ICDM’02), 2002, pp.

131–138.

[8] A. Banerjee, I. S. Dhillon, J. Ghosh, S. Merugu, and D. Modha, “A

generalized maximum entropy approach to bregman co-clustering and

matrix approximation,” Journal of Machine Learning Research, vol. 8,

pp. 1919–1986, 2007.

[9] H. Cho, “Co-clustering algorithms: Extensions and applications,”

Ph.D. dissertation, The University of Texas at Austin, August 2008.

[10] J. A. Hartigan, “Direct clustering of a data matrix,” Journal of the

American Statistical Association, vol. 67, no. 337, pp. 123–129, 1972.

[11] H. Cho and I. S. Dhillon, “Co-clustering of human cancer microarrays

using minimum sum-squared residue co- clustering,” IEEE/ACM

Transactions on Computational Biology and Bioinformatics, vol. 5, no.

3, pp. 385–400, 2008.

[12] H. Cho, “Data transformation for sum squared residue,” in Proc. the

14th Pacific-Asia Conference on Knowledge Discovery and Data

Mining (PAKDD’10), Part I, Lecture Notes in Artificial Intelligence

6118, pp. 48-55, 2010.

[13] B. R. Kowalski and C. F. Bender, “Pattern recognition: A powerful

approach to interpreting chemical data,” Journal of the American

Chemical Society, vol. 94, no. 16, pp. 5632–5639, 1972.

[14] O. E. Livne and G. H. Golub, “Scaling by binormalization,” Numerical

Algorithms, vol. 35, no. 1, pp. 97–120, 2004.

[15] M. Gavrilov, D. Anguelov, P. Indyk, and R. Motwani, “Mining the

stock market: Which measure is best?” in Proc. the 6th ACM

International Conference on Knowledge Discovery and Data Mining

(SIGKDD’00), 2000, pp. 487–496.

[16] K. Hakamada, M. Okamoto, and T. Hanai, “Novel technique for

preprocessing high dimensional time-course data from DNA

microarray: mathematical model-based clustering,” Bioinformatics, vol.

22, no. 7, pp. 843-848, 2006.

[17] J. Lin, E. Keogh, L. Wei, and S. Lonardi, “Experiencing sax: a novel

symbolic representation of time series,” Data Mining and Knowledge

Discovery, vol. 15, no. 2, pp. 107–144, 2007.

[18] M. Gavrilescu, G. W. Stuart, S. Rossell, K. Henshall, C. McKay, A. A.

Sergejew, D. Copolov, and G. F. Egan, “Functional connectivity

estimation in fMRI data: Influence of preprocessing and time course

selection,” Human Brain Mapping, vol. 29, pp. 1040–1052, 2008.

Hyuk Cho received the B.E. degree in computer

engineering from Chonbuk National University,

Korea, the M.A. degree in computer science from

Korea University, Korea, and both the M.S. and the

Ph.D. degrees in computer sciences from the

University of Texas at Austin.

He is an assistant professor in the Department of

Computer Science at Sam Houston State University,

Huntsville, Texas, USA. He is known for his work on

co-clustering algorithms, their extensions, and their applications to various

practical tasks in real world problems. His research interests include data

mining, statistical pattern recognition, machine learning, pervasive

computing, bioinformatics, and data science. Previously he worked on linear

matrix inequality and soft computing, including neural networks,

evolutionary computation, genetic algorithm, and fuzzy/rough set theory.

Prof. Cho is a member of IEEE/ACM and SIAM.

Min Kyung An received her Ph.D. in computer

science from the University of Texas at Dallas in

August 2013, and her M.S. in computer science from

the University of Texas at Arlington in August 2007.

During her M.S. studies, she received the Graduate

Studies Abroad Program Scholarship funded by the

Korean government.

She is currently an assistant professor in the

Department of Computer Science at Sam Houston

State University, Huntsville, Texas, USA. Her major research areas include

wireless ad hoc and sensor networks, social networks, design and analysis of

approximation algorithms, graph theory, and program analysis.

Prof. An is a member of IEEE/ACM.

International Journal of Information and Electronics Engineering, Vol. 4, No. 5, September 2014

364

