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Abstract—Wireless links in indoor sensor networks have 

distortions due to multipath fading from reflections and 

impulsive noise from indoor electric devices. In these harsh 

environments, blind correntropy equalization algorithm yields 

superior MSE performance compared with the constant 

modulus algorithm. However the correntropy algorithm has a 

heavy computational complexity, which is not suitable for 

power and cost effectiveness demanded in wireless sensor 

networks. In this paper, a new gradient estimation for weight 

updates of the correntropy algorithm in order to reduce its 

computational burden is proposed. For the size of the data 

block, N-M+1 including the number of lags M, the conventional 

correntropy algorithm requires (N+1)M  (M+1)M/2 

multiplications, whereas the proposed method of recursively 

estimating the gradient does only M2 . The simulation results 

show that the conventional and proposed gradient estimation 

methods yield exactly the same estimation traces proving 

justification of the proposed estimation. These results indicate 

that the proposed method can be implemented in reliable and 

efficient indoor sensor networks. 

 
Index Terms—Complexity, correntropy, impulsive noise, 

sensor network.  

 

I. INTRODUCTION 

Wireless sensor networks require signal processing for 

spatially distributed sensors and wireless communication 

problems in addition to electronic control of sensors and 

actuators. Among the harsh problems in sensor network 

communication environment are multipath propagation [1].  

Equalization is a powerful technique to compensate such 

multipath fading problems. Two types of equalization 

methods are used according to their purposes as 

training-aided equalization method and blind method. In 

wireless sensor networks in which sensors usually work with 

low duty-cycle training-aided equalizers need a sufficiently 

long training sequence in each data packet [2]. The 

training-aided equalizer algorithms are not suitable since 

equalizers for wireless sensor networks require the function 

of mitigation of multipath propagation and the efficiency of 

bandwidth, energy and cost as well [3]. 

Blind equalizer algorithms requiring no training sequences 

are appropriate for power and bandwidth efficiency [3]. The 

well-known constant modulus algorithm (CMA) has been 

developed for blind equalization based on the minimization 

of the instant error power defined as the difference between 

the output power and a constant modulus predefined 
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according to the modulation schemes [4]. The CMA is known 

to work well in the environment of Gaussian noise but not of 

impulsive noise because it induces large instantaneous 

system errors that often make the CMA fail [5]. Indoor 

wireless sensor networks are interfered with impulsive noise 

from a various sources of impulse noise as well as Gaussian 

background noise [6].    

Unlike the CMA that utilizes error power, the correntropy 

function has been proposed as a criterion of information 

theoretic learning to cope with impulsive noise problems and 

to enhance face recognition [5]-[8]. The correntropy blind 

algorithm developed based on the minimization of 

correntropy differences between source and equalizer output 

is known to be effective in impulsive noise contaminated 

environments.  

However, the correntropy blind algorithm has a 

disadvantage of heavy computational complexity due to the 

double summation operations carried out at each iteration 

time in the weight update process. This computational burden 

makes the correntropy blind algorithm inappropriate in 

wireless sensor networks since computationally efficient 

techniques must be used for reliable and efficient signal 

demodulation and detection in sensor networks [3]. 

In this paper, for the purpose of  the efficient 

implementation of the correntropy algorithm, a new method 

of reducing the computational complexity of the 

conventional correntropy algorithm while keeping the 

robustness of the algorithm to multipath and impulsive noise 

problems is proposed.  

 

II. SYSTEM MODEL AND CORRENTROPY ALGORITHM 

In wireless sensor networks, the sensor signal is 

preprocessed to become sensor data suitable for transmission. 

Then the sensor data ka at symbol time k are transmitted 

through the wireless multipath channel and impulsive 

noise kn  is added as described in baseband model in Fig. 1. 

The impulsive noise-added signal is received at the equalizer 

structured with a tapped delay line (TDL) with L weights. 

The wireless multipath channel can be expressed as 

)( ikhi   and the equalizer input becomes 

kikik nahx 
  [3]. With the input vector 

T

Lkkkk xxx ],...,,[ 11 X  and weight vector 

T

kLkkk www ],..,,[ ,1,1,0 W  the TDL equalizer produces the 

output 
k

T

kky XW . In many blind equalization schemes the 

difference kCMEe , between the instant output power 2

ky and 
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a constant modulus ][/][
24

2 ii aEaER   is to be minimized 

according to the MSE criterion MSEP described in (1) and (2) 

[4]. 
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Fig. 1. Wireless transmission between a sensor node and its related network. 

 

The CMA commonly being used in most blind 

equalization has been designed by minimizing the instant 

error power 
2

,kCMEe instead of minimizing (2) for practical 

reasons.   Impulsive noise can lead algorithms based on the 

instant error power to instability.  

As a new correlation function for information theoretic 

learning (ITL), the correntropy function ][mVY with lag 

m has been proposed as in (3) [5].  
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where 1mN is the size of the data block 

 mNkNkkk yyyy  ,...,,...,, 11 . For blind equalization 

applications, the correntropy distance CDP  between the 

source correntropy ][mVS and the equalizer output 

correntropy ][mVY is to be minimized [5]. 
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where M is the number of lags. 

For the minimization of PCDwith respect to the TDL 

equalizer weight, the steepest descent method with the 

convergence parameter    can be employed as  

 

W
WW






CD
kk

P
1

                            (5) 

The gradient 
W

 CDP in (5) is estimated using the data block 

 mNkNkkk yyyy  ,...,,...,, 11 as  
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     (6) 

 

Then the correntropy algorithm is obtained as follows [5].  
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The correntropy algorithm is known to have the immunity 

to impulsive noise as well as the ability to compensate for the 

channel distortion from multipath fading [5]. However, it has 

a disadvantage of the heavy computational complexity due to 

the double summation operations in (6) or (7) at each 

iteration time. This computational burden prevents its 

implementation in wireless sensor networks demanding 

power and cost efficiency. Aiming at the efficient 

implementation of the correntropy algorithm, a method of 

reducing the computational complexity of the correntropy 

algorithm is proposed in the following subsection. 

 

III. PROPOSED ALGORITHM USING RECURSIVE GRADIENT 

ESTIMATION OF THE CORRENTROPY DISTANCE  

The conventional gradient estimation of (6) is considered 

as a block processing method using a data block of 

 mNkNkkk yyyy  ,...,,...,, 11  at each iteration time. In 

this section we present a computation-reduced estimation 

method by investigating how the next time gradient 

1



k

CDP

W

is 

related with the current gradient 

k

CDP

W

 . Let us define 
I

k

CDP

W

  

and 
S

k

CDP

W

 as the initial state gradient for Nk 1  and the 

steady state gradient for Nk  , respectively.  Then 
I

k

CDP

W

  

and 
S

k

CDP

W

 can be expressed as  
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Firstly, the steady state gradient is investigated the 

relationship between the next time gradient and the current 
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gradient. The next time gradient 
S

k

CDP

1



W
 becomes  
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Then we can divide (10) into terms related with the next 

iteration time  1 ki  and the remaining. 
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Similarly, the equation (11) can be divided into terms 

related with the past iteration time mNki  1  and 

the remaining parts as 
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The equation (12) shows that the next gradient can be 

obtained recursively from the current gradient in the steady 

state. 

Secondly, the relationship of the initial state gradient 

between the next time gradient and the current gradient is  
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In order for the double summation term in (13) to be equal 

to (8), 
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mk should be 1. For small k in the initial state, 

)1( mk does not approach )2(  mk so that 
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CDP

1



W

is not 

expressed as a recursive form.  
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 Fig. 2. Impulsive noise for the experiment. 
 

From the analysis presented above and the recursive form 

(12), we propose that the weight update equation (5) is 

carried out using (8) in the initial state and the recursive 

gradient estimation (12) in )( Nk  . From (12) we can notice 

that the proposed algorithm reduces the computations of the 

double summation 2/)1()1( MMMN   to the 

computations of single summation 2M. That is, the 

conventional gradient method of correntropy algorithm has 

O(NM), but the proposed method has only O(M) while 

keeping the same performance.     

 

IV. RESULTS AND DISCUSSION 

In this section, it is experimented whether the proposed 
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gradient estimation of the correntropy algorithm yields the 

same results as the block-processed gradient estimation, and 

then the MSE learning performance of the proposed 

algorithm and CMA is compared. The 4 symbol points of 

ia are transmitted through the multipath 

channel composed of 3 paths 0 h , 1 h , 

2 h . The constant modulus R2 is 8.2. The impulsive 

noise to be added to the channel output is generated 

according to the work [5] with variance 50 and incident rate 

0.01 as depicted in Fig. 2. The variance of the background 

white noise is 0.001. The equalizer length is L=11 and the 

number N in the size of the data block is 30. The number of 

lags M is 20 and the kernel size  is 2.8 and the convergence 

parameter  =0.02 is used. The parameter values are chosen 

that produce the lowest steady state MSE in this simulation. 

For MSE performance comparison, we tested the well known 

CMA, the proposed algorithm. The convergence parameter 

for the CMA is 0.000001.  
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estimation results of the conventional

 

block-processing 

method and the proposed recursive method.

 

In the Fig. 3 we observe that the proposed algorithm 

converges but the CMA fails to converge revealing its 

vulnerability to impulsive noise.  In the noise of the strong 

and frequent impulses as shown in Fig. 2, the proposed 

algorithm reaches a significantly low steady state MSE 

around -17 dB while the CMA diverges.   

Fig. 4 shows the trace of gradient estimation results for the 

first tap weight (the other tap weights are omitted in this 

paper just for the page-limit). The dotted line is the result of 

the conventional block-processing method by (6) and the 

solid line is for the proposed estimation method. We find that 

the two gradient methods yield exactly the same estimation 

results proving justification of the proposed estimation. 

These results indicate that the heavy computational 

complexity of the conventional correntropy algorithm that 

may be inappropriate for implementation can be significantly 

reduced by the proposed method with its performance being 

preserved.  

 

V. CONCLUSION 

Wireless links in indoor sensor networks have distortions 

due to multipath fading from reflections and impulsive noise 

from indoor electric devices. In these harsh environments, 

blind correntropy equalization algorithm yields superior 

MSE performance compared with the well known CMA.  

A main drawback of the correntropy algorithm is a heavy 

computational complexity induced from some double 

summation operations at each iteration time. In this paper, a 

recursive gradient estimation for weight updates of the 

correntropy algorithm has been proposed in order to reduce 

its computational burden. It is analyzed that the proposed 

method reduces the computations  MN )1(  

2/)1( MM  from the double summation to 2M from two 

single summations of the proposed method. The simulation 

results show that the conventional and proposed gradient 

estimation methods yield exactly the same estimation traces 

proving justification of the proposed estimation. These 

results lead us to the conclusion that the proposed method 

having a significantly reduced computational complexity can 

be used in the implementation of reliable and efficient indoor 

wireless sensor networks.     
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