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Abstract—Analysis of EEG activity usually raises the 

problem of differentiating between genuine EEG activity and 

that which is introduced through a variety of external influence. 

These artifacts may affect the outcome of the EEG recording. In 

this paper, the Nonlinear Autoregressive (NAR) algorithm for 

artifacts removal of EEG signals in connection with the choice 

of the model structure (order) and computation of the system 

coefficients is proposed. The proposed method was tested in real 

EEG records acquired from eight subjects. The experimental 

result show that the proposed method can effectively remove 

the artifacts from all subjects. 

 
Index Terms—Artifacts, nonliniear adaptive autoregressive, 

EEG.  

 

I. INTRODUCTION 

When brain cells (neurons) are activated, the synaptic 

currents are produced within the dendrites. This current 

generates a secondary electrical field over the scalp 

measurable by Electroencephalogram (EEG) systems [1]. 

EEG is the noninvasive measurement of the electrical activity 

on the scalp over multiple areas of the brain. The measured of 

currents that flow during synaptic excitations of the dendrites 

of many pyramidal neurons in the cerebral cortex is called 

EEG signal. EEG signal, which is important in clinical 

application such as diagnosing and in research field such as 

brain computer interface (BCI) application is widely affected 

by a variety of large signal contaminations or artifacts. In 

current data acquisition, eye movement and blink related 

artifacts are often dominant over other electrophysiological 

contaminating signals (e.g., heart and muscle activity, head 

and body movement), as well as external interference due to 

power sources. Eye movements and blinks produce a large 

electrical signal, known as electrooculogram, which spreads 

across the scalp and contaminates the EEG. These 

contaminating potentials are commonly referred to as ocular 

artifacts. Artifacts can dramatically alter the signal recorded 

at all scalp sites, especially those closest to the source of the 

noise [2]-[7]. Hence, a necessary stage in EEG processing is 

artifact removal. 

In a BCI application that removed all data containing 

artifact might be left with too little clean data to be of 

practical use. The core components of a BCI system [8], [9] 
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(can be invasive or non-invasive) are brain signal acquisition, 

pre-processing, feature extraction, classification, translation, 

and feedback control of external devices as shown in Fig. 1. 

Therefore, the use of artifacts removal algorithm to the EEG 

records and leaving clean data would be of tremendous value 

(there has been an ample amount of research toward this goal) 

[8]-[19]. Many of these newer approaches involve techniques 

including independent component analysis (ICA) [14], 

neural networks [16]-[19], principal component analysis 

(PCA) [12], and other methods which were either unavailable 

or much less well known during the early days of EEG signal 

processing. Statistically, PCA decomposes the signals into 

uncorrelated, but not necessarily independent components 

that are spatially orthogonal and thus it cannot deal with 

higher-order statistical dependencies. However PCA cannot 

completely separate eye artifacts from brain signals 

especially when they both have comparable amplitudes. A 

newer approach uses ICA, which was developed in the 

context of blind source separation problems to form 

components that are as independent as possible. Another 

class of methods is based on decomposing the EEG and EOG 

signals into spatial components, identifying artifactual 

components and reconstructing the EEG without the 

artifactual components.  
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Basic six key steps in BCI.

 
 Techniques with an intelligent method for EEG artifacts 

without rejecting other data are remains difficult in EEG

 processing software

 

but necessary one for BCI designers. In 

this paper, we introduce an intelligent method (i.e., Nonlinear 

Adaptive Autoregressive (NAR)) for EEG artifacts removal 

which can significantly enhance prominence of the spike in 

the clean EEG signals. This method is designed to adaptively 

derive a relatively

 

small number of mean square error of a set 

of model parameters while retaining as much of the 

information from

 

the original data as possible.

 The structure

 

of this chapter is the following. Section II

 presents the data acquisition. Section III

 

presents the 

application of the Nonlinear Autoregressive for Noise 

Cancelation. Section IV

 

shows the discussions of the 

experimental results. Section V

 

draws conclusions.

 

 

II. DATA ACQUISITIONS 

In the experiment, eight healthy adult subjects (all men, 
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ranging in age between 20-22 old years) participated in this 

study, which are 5 subjects have slight hair and the rest are 

thick hair. All of the subjects do same experiment with three 

stimulus which are baseline, closed eye, and blink eye 

condition. It has been made sure that every participant was 

not in a stress mental condition while the experiment was 

During the experiment, all participant were sitting in a 

comfortable chair in front of 14” monitor at a distance of 

about 1 m. To build the experiment setting used in the EEG 

sample collecting process, we utilize the Open Vibe software 

to perform the data acquisition, stimulus visualization, and 

EEG recording with the function block that already built in. 

This experiment consists of two sessions, first session had a 

period of 130 seconds with 2 stimulus (i.e., baseline (eye 

normal) and closed eye condition). Second sessions had a 

period of 66 seconds with 2 others stimulus (i.e., baseline 

(eye normal) and blink eye condition). The EEG signals are 

recorded continuously using six electrodes (channels) at F7, 

F8, T7, T8, O1 and O2 that represent the visual of human 

brain and digitized at a 128 Hz sampling rate. The six 

electrodes configuration is shown in Fig. 3. 

 

 
Fig. 2. Eight subjects participated in the experiment. 
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Fig. 3. Six channels of electrode configuration in the experiment. 

 

III. NONLINEAR AUTOREGRESSIVE FOR NOISE 

CANCELATION 

In all the signal modeling problems, including nonlinear 

signal processing, the general problem is to find a good 

model structure and then estimate the parameters of some 

basis signals from the observations. A nonlinear 

autoregressive (NAR) model can be written as [14]: 
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where  ft and gt are known matrix-valued functions of some 

unknown data x(t) and ai , n is the order of the predictor, e(t) 

and u(t) are uncorrelated zero mean white noise processes not 

necessarily  Gaussian with variances Q and R (estimated 

using a technique described in [14]) respectively and ai ni: 

  n are the predictor coefficients. 

Let replaced the coefficients ai :i    n by ai(t) to reflect 

the possibility that the coefficients are subject to random 

perturbations and define the vector of coefficients (t) as 

follows: 

 

T
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where 0t N, N denotes the number of samples.  Notice 

that the coefficients ai :i    n have been replaced by ai(t) 

to reflect the possibility that the coefficients are subject to 

random perturbations. This fact can be modeled by assuming 

that: 

 

)()()1( ttt                                (6) 

 

where )(t  is also a zero mean white noise process not 

necessarily Gaussian with variance V (we assume that 

processes e(t) , u(t) and )(t  are independent). 

Given a set of observations y(t) where 0 t  N, then from 

an NAR(n) process we have to determine the unknown 

parameter vector: 
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Assuming that the signal coefficients are slowly varying in 

time (V 0 ), equation (6) is replaced by: 
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We consider that the signal x(t) and the predictor 

coefficients are collected in the (n 1)1 parameter vector 

Q(t) as follows: 
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The system model of equations (1) and (2) together with 

equation (9) can be reformulated as the nonlinear model: 
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being conducted. All participant pictures are shown in Fig. 2. 
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The notation n×1denotes the n 1 zero vector, n is the 

order of the model and );/( nttQ  is the a conditional MMSE 

state vector estimate that is obtained by the corresponding 

Extended Kalman Filter.  

 

IV. SIMULATIONS AND ANALYSIS 
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Fig. 4. Recorded EEG signals from 1st subject. 
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Fig. 5. Filtered EEG signals using BPF. 

 

Preparatory to an analysis of the features of ERPs 

components from EEG signals, actual signals were recorded 

in a six-channel (F7, F8, T7, T8, O1 and O2) configuration. 

The raw data (see Fig. 3) were first pre-processed using a 

wavelet denoising. Wavelet method is performed to enhance 

artifacts removal by eliminating high frequency in order to 

obtain the final result of clean EEG signals with amplitude 

2-6 μV range of values where the value is smaller than the 

signal Raw EEG signal. Therefore, the value of the amplitude 

of the wavelet denoising result is closer to the EEG signal 

amplitude range. The denoised EEG signals, therefore, were 

filtered using a sixth-order band-pass filter with cut-off 

frequencies of 3 Hz (i.e., to remove the trend from low 

frequency bands) and 13 Hz (i.e., to remove unimportant 

information from high frequency bands), respectively (see 

Fig. 4). Since the ERPs power (signal) to the EEG power 

(noise) ratio is small, a method of extracting and classifying 

the ERPs component from the EEG is desirable. One way of 

gaining further insights into EEG signals is by applying NAR 

allgorithm. At every iteration, the algorithm selects the model 

that corresponds to the maximum a posteriori probability as 

the correct one. This probability tends (asymptotically) to 

one, while the remaining probabilities tend to zero. If the 

model structure changes, the algorithm senses the variation, 

increases the corresponding a posteriori probability, while 

decreasing the remaining ones. Thus the algorithm is 

adaptive in the sense of being able to track model changes in 

real time. The extracted signal is given in Fig. 5. 
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Fig. 6. Extracted EEG signals using robust PCA based moving average. 

 

V. CONCLUSIONS 

In this paper, an intelligent method of the nonlinear AR 

model for artifacts removal and refine raw EEG signals has 

been addressed. The superiority of this method is that is 

adaptive, identifies the model parameters in a sufficiently 

small number of iterations and tracks successfully changes in 

the model structure. Finally, the results using the proposed 

illustrate the effectiveness of the proposed algorithm 

removing the artifacts and other non-even-related sources, 

and increasing the visibility of the ERPs on all subjects. 
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