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Abstract—In this paper, a new synchronization of fractional-

order chaotic systems called generalized function projective lag 

synchronization is introduced. This synchronization method is 

a generalization of function projective synchronization and 

function projective lag synchronization. Based on the stability 

theorem of linear fractional order systems, a suitable nonlinear 

fractional-order controller is designed for the synchronization 

of different structural systems. Three examples are given to 

verify the effectiveness of the proposed method. 

 

Index Terms—Chaos, fractional order, generalized function 

projective lag synchronization, nonlinear controller. 

 

I. INTRODUCTION 

Since pioneering and meaningful work of Pecora and 

Carroll [1], chaotic synchronization has become a hot topic 

and been studied by more and more scholars in recent 

decades. It has many applications in the field of physics, 

chemistry, biology, and others especially in secure 

communication. From the existing literature, there are many 

different types of synchronization method, such as complete 

synchronization [2]-[5], projective synchronization [6], 

generalized synchronization [7], [8], robust synchronization 

[9], function projective synchronization (FPS) [10], function 

projective lag synchronization (FPLS) [11]. There are many 

control scheme utilizing in chaotic synchronization, such as 

adaptive control [12]-[14], sliding mode control [15]-[17], 

fuzzy sliding mode control [18], [19]. In [20], a reference 

system is added to make the synchronization more complex. 

Inspired by [20], we introduce a new type of 

synchronization method named generalized function 

projective lag synchronization (GFPLS) which is a 

generalization of FPS and FPLS. 

The organization of this paper is as follows. The GFPLS 

method is introduced in Section II. Simulation and results 

are presented in Section III. In Section IV, conclusions are 

proposed. 

 

II. THE GFPLS METHOD 

A. The Definition of GFPLS 

Choose fractional-order drive system as: 

 

( ) ( ( ))

( ) (0), ,0

D x t l x t

x t x t







  
                           (1) 

where D signifies the fractional-order differential operator. 
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 0,1  denotes the fractional order of drive system, 

: c cl R R  indicates the continuous function of drive 

system. 1 2( ) ( ( ), ( ), ( ))T c

cx t x t x t x t R   indicates the state 

vector of drive system, c denotes the dimension of drive 

system. 0  is the time delay. The fractional-order 

response system is defined as: 

( ) ( ( )) ( ( ), ( ), ( ))D y t f y t u x t y t z t                     (2) 

where D signifies the fractional-order differential operator. 

 0,1 denotes the fractional order of response system, 

: d df R R indicates the continuous function. 

1 2( ) ( ( ), ( ), ( ))T d

dy t y t y t y t R   indicates the state vector 

of response system, d denotes the dimension of response 

system. 
1 2( ) ( ( ), ( ), ( ))T d

du t u t u t u t R  is the nonlinear 

controller to be designed later. Choose fractional- order 

reference system as: 

 ( ) ( ( ))qD z t h z t                                 (3) 

where qD signifies the fractional-order differential operator. 

 0,1q indicates the fractional order of reference 

system, : d dh R R  denotes the continuous function. 

1 2( ) ( ( ), ( ), ( ))T d

dz t z t z t z t R   denotes the state vector, 

System (3) is an attractor. Define error state vector as: 

( ) ( ) ( ( )) ( ) ( )e t y t C x t x t z t                       (4) 

where ( ( )) d cC x t R   , ( )x x t   . 

There exists two conditions, one condition is system 

dimension d c  

( ) 0
( )

0 ( )

K x
C x

Q x







 
  
 

 

where the matrix 

1 2 1( ) { ( ), ( ), , ( )}K x diag c x c x c x     , 

=min{ , }c d  and ( ) ( ( ), , ( ))Q x c x c x     , 

max{ , }c d  , the other condition is system 

dimension d c , the matrix is defined as 

( ) 0
( )

0 ( )T

K x
C x

Q x







 
  
 

 

Definition 1: GFPLS is realized. Assume there exists a 

nonlinear controller ( , ( ), ( ))u x y t z t such that 

lim ( ) 0
t

e t


 . 
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Remark 1: When system (3) denotes constant zero, 

GFPLS degenerated to FPLS. 

Remark 2: When system (3) denotes constant zero and 

time delay is zero, GFPLS degenerated to FPS. 

Remark 3: System (3) can be other attractors, such as 

chaos, hyperchaos, periodic function, and quasi period 

function. 

B. The Stability Analysis of GFPLS 

Consider controller as: 

( ( ) ) ( ) ( ( ) )

( ) ( , ( ), ( ))

u D C x x D z f C x x

f z G x y t z t e

 

   



  

  
            (5) 

where dR  is the compensation vector, 

( , ( ), ( )) d dG x y t z t R

  is a polynomial matrix. According 

to (2), (3) and (5), we obtain the fractional-order error 

system as follows: 

( ) ( ( , ( ), ( )) ( , ( ), ( ))) ( )D e t F x y t z t G x y t z t e t

                (6) 

where ( , ( ), ( )) ( ) ( ( )) ( ( ) ) ( ( ))F x y t z t e t f y t f C x x f z t       . 

Proposition 1: ( )C x and time delay is given, GFPLS is 

accomplished if there exists ( , ( ), ( )) d dG x y t z t R

  such 

that 

( , ( ), ( )) ( , ( ), ( ))= ( , ( ), ( ))F x y t z t G x y t z t N x y t z t           (7) 

where 
,[ ] d d

i jN n R   , , ,, i j j ii j n n   , 
,= , i ji j n R  

Proof: Assume  is an arbitrary eigenvalue of the matrix 

( , ( ), ( )) ( , ( ), ( ))F x y t z t G x y t z t
 

 and the related nonzero 

eigenvector denotes  . We may get 

( ( , ( ), ( )) ( , ( ), ( )))F x y t z t G x y t z t                   (8) 

Multiplying the 
H

 at the left of (8), we have 

( ( , ( ), ( )) ( , ( ), ( )))H HF x y t z t G x y t z t                (9) 

where H denotes conjugate transpose of a matrix, * also 

indicates an eigenvalue of the matrix 

( , ( ), ( )) ( , ( ), ( ))F x y t z t G x y t z t   
Similarly, we have 

*( ( , ( ), ( )) ( , ( ), ( )))H H HF x y t z t G x y t z t             (10) 

According to (9) and (10), we obtain 

*= [( ( , , ) ( , , ))

( ( , , ) ( , , )) ] /

/

H

H H

H H

F x y z G x y z

F x y z G x y z

 

 

  

  

   

  



 

             (11) 

where 0H   , ( ( , , ) ( , , ) )H d dN x y z N x y z R     . 

We are able to obtain that   denotes a real positive-

definite diagonal matrix. Thus, 0H   , we can have 

* 2 ( ) 0real                             (12) 

Hence, we can obtain 

arg( ) / 2 / 2                          (13) 

Based on the fractional-order stability theorem proposed 

in [21], the error system (6) asymptotically stabilizes at 

origin. GFPLS is achieved. The proof is completed. 

 

III. SIMULATION AND RESULTS 

In this section, three examples presented in [11] are 

utilized to demonstrate the effectiveness of the GFPLS with 

the same and different dimension. A predictor-corrector 

method proposed in [22], [23] is used to solve fractional-

order differential equations. 

A. GFPLS with Same Dimension d=c 

Choose the fractional-order Rössler system as drive 

system. 

 

1 2 3

2 1 1 2

3 2 1 3 3 3

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) (0), ,0

D x t x t x t

D x t x t x t

D x t x t x t x t

x t x t









 



  

 

  

  

                (14) 

When    1 2 3=0.95, , , 0.4,0.2,10    = , (0) (0.5,0.5,0.5)Tx  , 

drive system shows chaotic attractor drawn in Fig. 1. 

 

 
Fig. 1. The phase trajectory of the fractional-order Rössler system. 

 

Choose the fractional-order Lü system as response system. 

1 1 2 1 1

2 1 3 2 2 2

3 1 2 3 3 3

( ) ( ( ) ( )) ( , ( ), ( ))

( ) ( ) ( ) ( ) ( , ( ), ( ))

( ) ( ) ( ) ( ) ( , ( ), ( ))

D y t y t y t u x y t z t

D y t y t y t y t u x y t z t

D y t y t y t y t u x y t z t



















  

   

  

         (15) 

When 1 2 3=0.9,( , , ) (35,28,3),      (0) (4.2,3.5,11)Ty  , 

response system denotes chaotic attractor shown in Fig. 2. 

 

 
Fig. 2. The phase trajectory of the fractional-order Lü system. 

 

Choose the fractional-order Chen system as reference 

system. 

1 1 2 1

2 3 1 1 1 3 3 2

3 1 2 2 3

( ) ( ( ) ( ))

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

q

q

q

D z t z t z t

D z t z t z t z t z t

D z t z t z t z t



  



 

   

 

            (16) 

When 1 2 30.95,( , , ) (35,3,28),q      (0) (15,12,31)Tz  , 

reference system indicates chaotic attractor drawn in Fig. 3. 
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Fig. 3. The phase trajectory of the fractional-order Chen system. 

 

The error states are defined as 

( ) ( ) ( ) ( ), ( )i i i i i i ie t y t c x x z t x x t        , 

1,2,3i  . According to (5) and (15), we can get 

1 1

3 3 3 2 1

2 1 1 1 3

0

( , ( ), ( )) ( ( ) ( )) ( )

( ) ( ( ) ( ))

F x y t z t c x x z t y t

y t c x x z t

  

 

 





 
 

    
   

 

3 3 3 1 2

2 1 1

1 1 1

0 ( ( ) ( ) ) ( )

( , ( ), ( )) 0 ( )

0 ( ( ) ( )) 0

c x x z t y t

G x y t z t d y t

c x x z t

 



 





   
 

   
   

 

where d1>0, we can obtain 

( , ( ), ( )) ( , ( ), ( ))= ( , ( ), ( ))F x y t z t G x y t z t N x y t z t     

where 
,[ ] d d

i jN n R   , 
, ,, i j j ii j n n   , 

,= , i ji j n R , 

, 1,2,3,i j  . 

The GFPLS with same dimension is realized based on 

proposition 1. 

When  2 3 3 1( ) 10 35, 12.5,4 20C x diag x x x x        , 

10.5, 5d   , the error state curves of GFPLS with same 

dimension are shown in Fig. 4. 

 

 
Fig. 4. The error state curves of GFPLS with same dimension. 

 

B. GFPLS with Different Dimension d<c 

Choose the fractional-order hyperchaotic Lorenz system 

as drive system 

1 1 2 1 4

2 2 1 2 1 3

3 1 2 3 3

4 2 3 4 4

( ) ( ( ) ( )) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) (0), [ ,0]

D x t x t x t x t

D x t x t x t x t x t

D x t x t x t x t

D x t x t x t x t

x t x t



















  

  

 

  

  

                (17) 

When 1 2 3 40.98,( , , , ) (10,28,8 / 3,1)      , 

(0) ( 2.2, 6,8.3, 9)Tx     , drive system denotes 

hyperchaotic attractor shown in Fig. 5. 

 

 
Fig. 5. The phase trajectory of the fractional-order hyperchaotic Lorenz 

system. 

 

Choose the fractional-order Rössler system as response 

system. 

1 2 3 1

2 1 1 2 2

3 2 1 3 3 3 3

( ) ( ) ( ) ( , ( ), ( ))

( ) ( ) ( ) ( , ( ), ( ))

( ) ( ) ( ) ( ) ( , ( ), ( ))

D y t y t y t u x y t z t

D y t y t y t u x y t z t

D y t y t y t y t u x y t z t















 

   

  

   

      (18) 

 

Choose the fractional-order Lü system as reference 

system. 

1 1 2 1

2 1 3 2 2

3 1 2 3 3

( ) ( ( ) ( ))

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

q

q

q

D z t z t z t

D z t z t z t z t

D z t z t z t z t







 

  

 

                          (19) 

Based on (4), we can obtain the error states 

1 1 1 1 1

2 2 2 2 2

3 3 3 3 4 4 3

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

e t y t c x x z t

e t y t c x x z t

e t y t c x x c x x z t

 

 

   

  

  

   

 

where ( ) 1,2,3,4i ix x t i   ， . According to (5) and 

(18), we can have 

1

3 3 4 4 3 1 3

0 1 1

( , ( ), ( )) 1 0

( ) ( ) ( ) 0 ( )

F x y t z t

c x x c x x z t y t



   





  
 

  
    

 

2

1 3 2

2 1 3 4

0

( , ( ), ( )) 0 ( )

0 ( ) ( )

d L

G x y t z t d y t

y t y t d

 



 
 

    
    

 

where 
3 3 4 4 3=1 ( ) ( ) ( )L c x x c x x z t      , 

2 3 40, 0, 0d d d   , 

we can obtain 

( , ( ), ( )) ( , ( ), ( ))= ( , ( ), ( ))F x y t z t G x y t z t N x y t z t     

where 
,[ ] d d

i jN n R   , , ,, i j j ii j n n   , 
,= , i ji j n R , 

, 1,2,3i j  . 

Hence, the GFPLS with different dimension (d<c) is 

achieved based on proposition 1. 

When 2 3 40.2, 1, 6, 3d d d     , 
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2

2 3

1

/ 2

( )

1 / 2

x

C x x x

x



  



 
 

  
 
 

. 

The error state curves of GFPLS with different dimension 

(d<c) are shown in Fig. 6. 

 

 

Fig. 6. The error state curves of GFPLS with different dimension (d<c). 

 

C. GFPLS with Different Dimension d>c 

Choose the fractional-order Lü system as drive system. 

1 1 2 1

2 1 3 2 2

3 1 2 3 3

( ) ( ( ) ( ))

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) (0), [ ,0]

D x t x t x t

D x t x t x t x t

D x t x t x t x t

x t x t















 

  

 

  

                   (20) 

 

Choose the fractional-order hyperchaotic Chen system as 

response system. 

1 1 2 1 4 1

2 2 1 1 3 3 2 2

3 1 2 4 3 3

4 2 3 5 4 4

( ) ( ( ) ( )) ( ) ( , ( ), ( ))

( ) ( ) ( ) ( ) ( ) ( , ( ), ( ))

( ) ( ) ( ) ( ) ( , ( ), ( ))

( ) ( ) ( ) ( ) ( , ( ), ( ))

D y t y t y t y t u x y t z t

D y t y t y t y t y t u x y t z t

D y t y t y t y t u x y t z t

D y t y t y t y t u x y t z t



















 





   

   

  

  

        (21) 

When 
1 2 3 4 50.96,( , , , , ) (35,7,12,3,0.5)       , 

(0) (1.2,2.1,3.1,0.1)Ty  , response system indicates the 

hyperchaotic attractor shown in Fig. 7. 

 

 

 
Fig. 7. The phase trajectory of the fractional-order hyperchaotic Chen 

system. 

Choose the fractional-order hyperchaotic Lorenz system 

as reference system 

1 1 2 1 4

2 2 1 2 1 3

3 1 2 3 3

4 2 3 4 4

( ) ( ( ) ( )) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

q

q

q

q

D z t z t z t z t

D z t z t z t z t z t

D z t z t z t z t

D z t z t z t z t









  

  

 

  

                (22) 

According to (4), we can have the error states 

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 4 3 4

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

e t y t c x x z t

e t y t c x x z t

e t y t c x x z t

e t y t c x x z t

 

 

 

 

  

  

  

  

 

where ( ) 1,2,3i ix x t i   ， . According to (5) and (21), 

we can have 

1 1

2 3 3 1 1 1

2 2 2 1 4

3 2 2 2 5

0 1

( ) ( ( ) ( )) 0
( , ( ), ( ))=

( ) ( ) ( ) 0

0 ( ) ( ) ( )

y t c x x z t
F x y t z t

c x x z t y t

y t c x x z t

 



 

 

 

 





 
 

   
  
   

5 1 2 2 2

1 3 6 1 1 1 3

1

2 2 2 5 7

( ( ) ( )) 0

( ) ( ) ( )
( , ( ), ( ))

0 ( ) 0 0

1 0 ( ( ) ( ))

d c x x z t

L d c x x z t y t
G x y t z t

y t

c x x z t d

 

 



 







   
 

    
 
       

 

where 
1 3 2= ( )L y t  ,

5 1 6 70 , 0, 0d d d    , we can obtain 

( , ( ), ( )) ( , ( ), ( ))= ( , ( ), ( ))F x y t z t G x y t z t N x y t z t     

Where ,[ ] d d

i jN n R   , , ,, i j j ii j n n   , ,= , i ji j n R , 

, 1,2,3,4i j  . 

Hence, the GFPLS with different dimension (d>c) is 

realized based on proposition 1. 

When 5 6 70.05, 25, 5, 4d d d     , 
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The error state curves of GFPLS with different dimension 

(d>c) are shown in Fig. 8. 

 
Fig. 8. The error state curves of GFPLS with different dimension (d>c). 

 

IV. CONCLUSIONS 

In this paper, the GFPLS of fractional-order chaotic 

system is investigated based on the fractional-order stability 

theorem. This synchronization scheme is more complex and 
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generalized than the existing synchronization method. The 

numerical simulations with the same and different 

dimension are given to illustrate the effectiveness of the 

proposed method. In the future, GFPLS has more potential 

to be applied in the secure communication. 
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