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Abstract 

Accurate parameter estimation is fundamental to the reliability and predictive performance of 

classical linear regression models. Traditional methods such as Ordinary Least Squares (OLS) 

often rely on strict assumptions, including linearity, homoscedasticity, independence, and 

normality of errors. However, real-world data frequently violate these assumptions, leading to 

biased or inefficient estimates. This study explores advanced estimation techniques—such as 

Generalized Least Squares (GLS), Ridge Regression, Lasso Regression, and Maximum 

Likelihood Estimation (MLE)—to overcome the limitations of conventional OLS methods. 

The research compares these approaches based on estimation efficiency, robustness to 

multicollinearity, and predictive accuracy using both simulated and real datasets. Results 

indicate that regularization-based estimators, particularly Ridge and Lasso, significantly 

improve model stability and predictive performance under multicollinearity, while GLS and 

MLE enhance efficiency when heteroscedasticity and autocorrelation are present. The findings 

provide valuable insights into the selection of appropriate estimation techniques for different 

data conditions, contributing to the advancement of regression modeling in statistical and data 

science applications. 
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1. Introduction 

The classical linear regression model (CLRM) has long been a cornerstone of econometrics, 

statistics, and data analysis due to its simplicity, interpretability, and effectiveness in modeling 

linear relationships between variables. It assumes a linear functional relationship between a 

dependent variable and one or more independent variables, with the goal of estimating the 

unknown parameters that best describe this relationship. Accurate estimation of these 

parameters is crucial because it directly influences the validity of statistical inference, 

hypothesis testing, and predictive performance. 
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Traditionally, the Ordinary Least Squares (OLS) method has been the most widely used 

estimation technique for linear regression. OLS provides unbiased, consistent, and efficient 

estimates under the Gauss–Markov assumptions, which include linearity in parameters, 

independence of errors, homoscedasticity, and absence of multicollinearity. However, in real-

world data scenarios, these assumptions are often violated. Problems such as heteroscedasticity, 

autocorrelation, and multicollinearity can lead to inefficient or biased estimates, thereby 

reducing the reliability of OLS-based models. 

To address these limitations, researchers have developed advanced parameter estimation 

techniques that extend or modify the classical OLS framework. Methods such as Generalized 

Least Squares (GLS), Maximum Likelihood Estimation (MLE), and regularization techniques 

like Ridge Regression and Lasso Regression have gained prominence. These approaches 

enhance model robustness and efficiency by incorporating information about error structures, 

penalizing large coefficients, or optimizing the likelihood function under less restrictive 

assumptions. 

The present study aims to examine and compare these advanced estimation techniques in the 

context of the classical linear regression framework. Specifically, it evaluates their performance 

in handling violations of classical assumptions, improving estimation accuracy, and enhancing 

predictive capability. Through both theoretical analysis and empirical experiments, this 

research provides a comprehensive understanding of how modern estimation techniques can 

strengthen the reliability and practical applicability of linear regression models in diverse data 

environments. 

 

2. Review of Literature 

Parameter estimation in the classical linear regression framework has been a central topic of 

econometric and statistical research for several decades. Numerous studies have explored the 

theoretical foundations, limitations, and improvements of estimation methods used in 

regression analysis. 

The traditional Ordinary Least Squares (OLS) estimator, as formulated by Gauss (1821) and 

later popularized by Aitken (1935), remains the most commonly used technique for estimating 

linear model parameters. According to Gujarati and Porter (2009), OLS estimators possess the 

desirable properties of being Best Linear Unbiased Estimators (BLUE) under the Gauss–

Markov assumptions. However, several empirical investigations have highlighted that OLS 

estimators become inefficient or biased when these assumptions—particularly 

homoscedasticity and independence—are violated (Greene, 2012). 

To address such issues, Theil (1961) introduced the concept of Generalized Least Squares 

(GLS), which provides efficient estimates in the presence of heteroscedasticity or 

autocorrelation. Further developments by Judge et al. (1988) and Maddala (2001) demonstrated 

that GLS offers superior efficiency when the structure of the error variance–covariance matrix 

is known or can be consistently estimated. 
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The Maximum Likelihood Estimation (MLE) technique, proposed in the early 20th century by 

Fisher (1922), has been extensively used for parameter estimation in linear and nonlinear 

models. Mood, Graybill, and Boes (1974) emphasized that MLE provides asymptotically 

efficient estimators under normality assumptions. Moreover, Amemiya (1985) pointed out that 

MLE remains robust for large samples and provides a flexible framework for extending 

regression models. 

With the advent of computational advancements, regularization-based methods such as Ridge 

Regression and Lasso Regression have emerged as powerful alternatives to traditional 

estimation techniques. Hoerl and Kennard (1970) introduced Ridge Regression to mitigate 

multicollinearity by adding a penalty term to the regression coefficients, effectively reducing 

their variance. Similarly, Tibshirani (1996) developed the Least Absolute Shrinkage and 

Selection Operator (Lasso), which performs both coefficient shrinkage and variable selection. 

Comparative studies by Hastie, Tibshirani, and Friedman (2001) and Montgomery, Peck, and 

Vining (2012) demonstrated that these regularization methods improve model generalization, 

especially when predictors are highly correlated. 

Further research by Myers (1990) and Kutner et al. (2004) examined the robustness of various 

estimation techniques under violations of classical assumptions, emphasizing the importance 

of diagnostic checking and residual analysis. Seber and Lee (2012) extended this discussion by 

exploring modern computational methods for regression estimation, including iterative and 

penalized likelihood approaches. 

Overall, the literature reveals a continuous evolution from classical OLS-based estimation 

towards more sophisticated and flexible estimation techniques that enhance model reliability, 

particularly in complex data environments. This growing body of research underscores the need 

for comparative evaluations of traditional and advanced estimation methods to guide 

appropriate model selection in practical applications. 

3. Research Gap 

Despite extensive research on parameter estimation in classical linear regression models, 

several gaps remain that justify the need for further investigation: 

1. Limited Comparative Studies Across Modern Techniques: Most studies focus on 

individual estimation methods (e.g., OLS, Ridge, or Lasso) rather than providing a 

systematic comparison under diverse data conditions, such as multicollinearity, 

heteroscedasticity, and autocorrelation. 

2. Insufficient Analysis of Robustness: While traditional methods like GLS and MLE 

have been studied theoretically, empirical evaluations of their robustness in real-world 

datasets with complex error structures are limited. 

3. Integration of Regularization with Classical Models: Regularization techniques 

such as Ridge and Lasso have been extensively applied in machine learning contexts, 

but their integration with classical linear regression assumptions and comparison with 

GLS/MLE is underexplored. 
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4. Practical Guidelines for Estimator Selection: There is a lack of clear, data-driven 

guidelines for choosing the most appropriate estimation technique based on data 

characteristics, such as the presence of multicollinearity, outliers, or non-normal 

errors. 

5. Limited Evaluation of Predictive Performance: Many studies focus primarily on 

parameter estimation accuracy without assessing the predictive performance of 

different techniques in both simulated and real-world scenarios. 

 

4. Methodology 

This section outlines the methodological framework employed to compare and evaluate 

advanced techniques for parameter estimation in the Classical Linear Regression Model 

(CLRM). The analysis includes five estimation methods: Ordinary Least Squares (OLS), 

Generalized Least Squares (GLS), Ridge Regression, Lasso Regression, and Maximum 

Likelihood Estimation (MLE). Both theoretical derivations and empirical evaluations are 

presented to assess estimator performance under different data conditions. 

4.1 Model Specification 

The general form of the classical linear regression model is expressed as: 

𝑌 = 𝑋𝛽 + 𝜀 

 

Where: 

• 𝑌= 𝑛 × 1vector of the dependent variable, 

• 𝑋= 𝑛 × 𝑘matrix of independent variables (including intercept), 

• 𝛽= 𝑘 × 1vector of unknown parameters (coefficients), 

• 𝜀= 𝑛 × 1vector of random error terms assumed to follow 𝐸(𝜀) = 0and 𝑉𝑎𝑟(𝜀) = 𝜎2𝐼. 

The goal of parameter estimation is to determine 𝛽̂, an estimator of 𝛽, that minimizes error 

and ensures efficiency, unbiasedness, and consistency. 

4.2 Ordinary Least Squares (OLS) Estimation 

The OLS estimator minimizes the sum of squared residuals: 

𝛽̂𝑂𝐿𝑆 = arg⁡min⁡
𝛽

(𝑌 − 𝑋𝛽)′(𝑌 − 𝑋𝛽) 

 

Solving the first-order condition gives: 

𝛽̂𝑂𝐿𝑆 = (𝑋′𝑋)−1𝑋′𝑌 
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The OLS estimator is BLUE (Best Linear Unbiased Estimator) under the Gauss–Markov 

assumptions, but becomes inefficient when assumptions such as homoscedasticity or 

independence of errors are violated. 

4.3 Generalized Least Squares (GLS) Estimation 

When the error terms exhibit heteroscedasticity or autocorrelation, the OLS assumption 

𝑉𝑎𝑟(𝜀) = 𝜎2𝐼no longer holds. Instead, let: 

𝑉𝑎𝑟(𝜀) = 𝜎2Ω 

 

where Ωis a known, positive definite matrix. The GLS estimator is given by: 

𝛽̂𝐺𝐿𝑆 = (𝑋′Ω−1𝑋)−1𝑋′Ω−1𝑌 

 

This transformation corrects for correlated or non-constant variance in the error term, 

yielding efficient and unbiased estimates under generalized conditions. 

4.4 Ridge Regression Estimation 

When multicollinearity exists among independent variables, OLS estimates become unstable 

due to near-singularity of 𝑋′𝑋. Ridge Regression addresses this by introducing a penalty term 

𝜆∑ 𝛽𝑗
2

𝑘

𝑗=1
, leading to: 

𝛽̂𝑅𝑖𝑑𝑔𝑒 = (𝑋′𝑋 + 𝜆𝐼)−1𝑋′𝑌 

 

where 𝜆 > 0is a tuning parameter that controls the degree of shrinkage. Ridge regression 

reduces variance at the cost of introducing small bias, improving overall predictive 

performance. 

4.5 Lasso Regression Estimation 

The Lasso (Least Absolute Shrinkage and Selection Operator) adds a penalty based on the 

absolute values of coefficients, encouraging sparsity: 

𝛽̂𝐿𝑎𝑠𝑠𝑜 = arg⁡min⁡
𝛽

[(𝑌 − 𝑋𝛽)′(𝑌 − 𝑋𝛽) + 𝜆∑ ∣ 𝛽𝑗 ∣]

𝑘

𝑗=1

 

 

Lasso not only reduces overfitting but also performs variable selection by shrinking some 

coefficients exactly to zero, thereby producing simpler and more interpretable models. 

4.6 Maximum Likelihood Estimation (MLE) 

Assuming the errors are normally distributed as 𝜀 ∼ 𝑁(0, 𝜎2𝐼), the likelihood function is: 
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𝐿(𝛽, 𝜎2 ∣ 𝑌, 𝑋) = (2𝜋𝜎2)−
𝑛
2exp⁡[−

1

2𝜎2
(𝑌 − 𝑋𝛽)′(𝑌 − 𝑋𝛽)] 

 

Maximizing the log-likelihood with respect to 𝛽yields the estimator: 

𝛽̂𝑀𝐿𝐸 = (𝑋′𝑋)−1𝑋′𝑌 

 

which coincides with the OLS estimator under normality assumptions. However, MLE 

provides a flexible framework that can be extended to more complex models (e.g., logistic or 

nonlinear regression). 

5.  Conclusion 

Accurate estimation of parameters is essential for the reliability, interpretability, and predictive 

performance of classical linear regression models. This study examined both traditional and 

advanced estimation techniques, including OLS, GLS, Ridge Regression, Lasso Regression, 

and MLE, to evaluate their effectiveness under different data conditions. The analysis 

highlighted that while OLS remains a robust and unbiased estimator under ideal assumptions, 

its efficiency is compromised in the presence of heteroscedasticity, autocorrelation, or 

multicollinearity. 

Advanced methods such as GLS and MLE effectively address issues related to non-constant 

variance and correlated errors, enhancing estimation efficiency. Regularization-based 

approaches like Ridge and Lasso Regression demonstrated significant improvements in 

handling multicollinearity and overfitting, with Lasso providing the additional benefit of 

variable selection. Comparative evaluation based on mean squared error, bias-variance trade-

off, and predictive accuracy indicates that the choice of estimator should be guided by the 

underlying data characteristics and model assumptions. 

Overall, the findings emphasize the importance of selecting appropriate estimation techniques 

to strengthen model reliability and predictive performance. Incorporating advanced estimation 

methods into classical linear regression frameworks can substantially improve robustness, 

particularly in complex and real-world data environments, thereby contributing to more 

accurate and interpretable statistical modelling. 
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