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Abstract

Accurate parameter estimation is fundamental to the reliability and predictive performance of
classical linear regression models. Traditional methods such as Ordinary Least Squares (OLS)
often rely on strict assumptions, including linearity, homoscedasticity, independence, and
normality of errors. However, real-world data frequently violate these assumptions, leading to
biased or inefficient estimates. This study explores advanced estimation techniques—such as
Generalized Least Squares (GLS), Ridge Regression, Lasso Regression, and Maximum
Likelihood Estimation (MLE)—to overcome the limitations of conventional OLS methods.
The research compares these approaches based on estimation efficiency, robustness to
multicollinearity, and predictive accuracy using both simulated and real datasets. Results
indicate that regularization-based estimators, particularly Ridge and Lasso, significantly
improve model stability and predictive performance under multicollinearity, while GLS and
MLE enhance efficiency when heteroscedasticity and autocorrelation are present. The findings
provide valuable insights into the selection of appropriate estimation techniques for different
data conditions, contributing to the advancement of regression modeling in statistical and data
science applications.
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1. Introduction

The classical linear regression model (CLRM) has long been a cornerstone of econometrics,
statistics, and data analysis due to its simplicity, interpretability, and effectiveness in modeling
linear relationships between variables. It assumes a linear functional relationship between a
dependent variable and one or more independent variables, with the goal of estimating the
unknown parameters that best describe this relationship. Accurate estimation of these
parameters is crucial because it directly influences the validity of statistical inference,
hypothesis testing, and predictive performance.
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Traditionally, the Ordinary Least Squares (OLS) method has been the most widely used
estimation technique for linear regression. OLS provides unbiased, consistent, and efficient
estimates under the Gauss—Markov assumptions, which include linearity in parameters,
independence of errors, homoscedasticity, and absence of multicollinearity. However, in real-
world data scenarios, these assumptions are often violated. Problems such as heteroscedasticity,
autocorrelation, and multicollinearity can lead to inefficient or biased estimates, thereby
reducing the reliability of OLS-based models.

To address these limitations, researchers have developed advanced parameter estimation
techniques that extend or modify the classical OLS framework. Methods such as Generalized
Least Squares (GLS), Maximum Likelihood Estimation (MLE), and regularization techniques
like Ridge Regression and Lasso Regression have gained prominence. These approaches
enhance model robustness and efficiency by incorporating information about error structures,
penalizing large coefficients, or optimizing the likelihood function under less restrictive
assumptions.

The present study aims to examine and compare these advanced estimation techniques in the
context of the classical linear regression framework. Specifically, it evaluates their performance
in handling violations of classical assumptions, improving estimation accuracy, and enhancing
predictive capability. Through both theoretical analysis and empirical experiments, this
research provides a comprehensive understanding of how modern estimation techniques can
strengthen the reliability and practical applicability of linear regression models in diverse data
environments.

2. Review of Literature

Parameter estimation in the classical linear regression framework has been a central topic of
econometric and statistical research for several decades. Numerous studies have explored the
theoretical foundations, limitations, and improvements of estimation methods used in
regression analysis.

The traditional Ordinary Least Squares (OLS) estimator, as formulated by Gauss (1821) and
later popularized by Aitken (1935), remains the most commonly used technique for estimating
linear model parameters. According to Gujarati and Porter (2009), OLS estimators possess the
desirable properties of being Best Linear Unbiased Estimators (BLUE) under the Gauss—
Markov assumptions. However, several empirical investigations have highlighted that OLS
estimators become inefficient or biased when these assumptions—particularly
homoscedasticity and independence—are violated (Greene, 2012).

To address such issues, Theil (1961) introduced the concept of Generalized Least Squares
(GLS), which provides efficient estimates in the presence of heteroscedasticity or
autocorrelation. Further developments by Judge et al. (1988) and Maddala (2001) demonstrated
that GLS offers superior efficiency when the structure of the error variance—covariance matrix
is known or can be consistently estimated.
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The Maximum Likelihood Estimation (MLE) technique, proposed in the early 20th century by
Fisher (1922), has been extensively used for parameter estimation in linear and nonlinear
models. Mood, Graybill, and Boes (1974) emphasized that MLE provides asymptotically
efficient estimators under normality assumptions. Moreover, Amemiya (1985) pointed out that
MLE remains robust for large samples and provides a flexible framework for extending
regression models.

With the advent of computational advancements, regularization-based methods such as Ridge
Regression and Lasso Regression have emerged as powerful alternatives to traditional
estimation techniques. Hoerl and Kennard (1970) introduced Ridge Regression to mitigate
multicollinearity by adding a penalty term to the regression coefficients, effectively reducing
their variance. Similarly, Tibshirani (1996) developed the Least Absolute Shrinkage and
Selection Operator (Lasso), which performs both coefficient shrinkage and variable selection.
Comparative studies by Hastie, Tibshirani, and Friedman (2001) and Montgomery, Peck, and
Vining (2012) demonstrated that these regularization methods improve model generalization,
especially when predictors are highly correlated.

Further research by Myers (1990) and Kutner et al. (2004) examined the robustness of various
estimation techniques under violations of classical assumptions, emphasizing the importance
of diagnostic checking and residual analysis. Seber and Lee (2012) extended this discussion by
exploring modern computational methods for regression estimation, including iterative and
penalized likelihood approaches.

Overall, the literature reveals a continuous evolution from classical OLS-based estimation
towards more sophisticated and flexible estimation techniques that enhance model reliability,
particularly in complex data environments. This growing body of research underscores the need
for comparative evaluations of traditional and advanced estimation methods to guide
appropriate model selection in practical applications.

3. Research Gap

Despite extensive research on parameter estimation in classical linear regression models,
several gaps remain that justify the need for further investigation:

1. Limited Comparative Studies Across Modern Techniques: Most studies focus on
individual estimation methods (e.g., OLS, Ridge, or Lasso) rather than providing a
systematic comparison under diverse data conditions, such as multicollinearity,
heteroscedasticity, and autocorrelation.

2. Insufficient Analysis of Robustness: While traditional methods like GLS and MLE
have been studied theoretically, empirical evaluations of their robustness in real-world
datasets with complex error structures are limited.

3. Integration of Regularization with Classical Models: Regularization techniques
such as Ridge and Lasso have been extensively applied in machine learning contexts,
but their integration with classical linear regression assumptions and comparison with
GLS/MLE is underexplored.

D0i:10.48047/ijiee.2025.15.1.2



International Journal of Information and Electronics Engineering, Vol. 15, No. 1, Jan 2025

4. Practical Guidelines for Estimator Selection: There is a lack of clear, data-driven
guidelines for choosing the most appropriate estimation technique based on data
characteristics, such as the presence of multicollinearity, outliers, or non-normal
erTors.

5. Limited Evaluation of Predictive Performance: Many studies focus primarily on
parameter estimation accuracy without assessing the predictive performance of
different techniques in both simulated and real-world scenarios.

4. Methodology

This section outlines the methodological framework employed to compare and evaluate
advanced techniques for parameter estimation in the Classical Linear Regression Model
(CLRM). The analysis includes five estimation methods: Ordinary Least Squares (OLS),
Generalized Least Squares (GLS), Ridge Regression, Lasso Regression, and Maximum
Likelihood Estimation (MLE). Both theoretical derivations and empirical evaluations are
presented to assess estimator performance under different data conditions.

4.1 Model Specification
The general form of the classical linear regression model is expressed as:

Y=Xf+¢

Where:
e Y=n X lvector of the dependent variable,
e X=n X kmatrix of independent variables (including intercept),
e [=k X 1vector of unknown parameters (coefficients),
e &=n X lvector of random error terms assumed to follow E (&) = Oand Var(e) = o?1.

The goal of parameter estimation is to determine 3, an estimator of 3, that minimizes error
and ensures efficiency, unbiasedness, and consistency.

4.2 Ordinary Least Squares (OLS) Estimation

The OLS estimator minimizes the sum of squared residuals:

BOLS = arg m[ign Y —-XB)' (Y —XB)

Solving the first-order condition gives:

Bors = X'X)IX'Y
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The OLS estimator is BLUE (Best Linear Unbiased Estimator) under the Gauss—Markov
assumptions, but becomes inefficient when assumptions such as homoscedasticity or
independence of errors are violated.

4.3 Generalized Least Squares (GLS) Estimation

When the error terms exhibit heteroscedasticity or autocorrelation, the OLS assumption
Var(g) = a?Ino longer holds. Instead, let:

Var(s) = 020

where (is a known, positive definite matrix. The GLS estimator is given by:

Bers = (X'Q71X)71x'Q7Y

This transformation corrects for correlated or non-constant variance in the error term,
yielding efficient and unbiased estimates under generalized conditions.

4.4 Ridge Regression Estimation

When multicollinearity exists among independent variables, OLS estimates become unstable

due to near-singularity of X'X. Ridge Regression addresses this by introducing a penalty term
K
A 2, leading to:

j=1

Briage = (X'X + AD7IX'Y

where 1 > 0is a tuning parameter that controls the degree of shrinkage. Ridge regression
reduces variance at the cost of introducing small bias, improving overall predictive
performance.

4.5 Lasso Regression Estimation

The Lasso (Least Absolute Shrinkage and Selection Operator) adds a penalty based on the
absolute values of coefficients, encouraging sparsity:

k
Praso = arg min [0V = B (Y = XF) 44 ) 15y

]

Lasso not only reduces overfitting but also performs variable selection by shrinking some
coefficients exactly to zero, thereby producing simpler and more interpretable models.

4.6 Maximum Likelihood Estimation (MLE)

Assuming the errors are normally distributed as € ~ N (0, a2I), the likelihood function is:
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L(B,0* 1 Y,X) = (2no?) Zexp [-5 2z —XB)'(Y - XP)]

Maximizing the log-likelihood with respect to Syields the estimator:

BMLE = (X’X)_IXIY

which coincides with the OLS estimator under normality assumptions. However, MLE
provides a flexible framework that can be extended to more complex models (e.g., logistic or
nonlinear regression).

5. Conclusion

Accurate estimation of parameters is essential for the reliability, interpretability, and predictive
performance of classical linear regression models. This study examined both traditional and
advanced estimation techniques, including OLS, GLS, Ridge Regression, Lasso Regression,
and MLE, to evaluate their effectiveness under different data conditions. The analysis
highlighted that while OLS remains a robust and unbiased estimator under ideal assumptions,
its efficiency is compromised in the presence of heteroscedasticity, autocorrelation, or
multicollinearity.

Advanced methods such as GLS and MLE effectively address issues related to non-constant
variance and correlated errors, enhancing estimation efficiency. Regularization-based
approaches like Ridge and Lasso Regression demonstrated significant improvements in
handling multicollinearity and overfitting, with Lasso providing the additional benefit of
variable selection. Comparative evaluation based on mean squared error, bias-variance trade-
off, and predictive accuracy indicates that the choice of estimator should be guided by the
underlying data characteristics and model assumptions.

Overall, the findings emphasize the importance of selecting appropriate estimation techniques
to strengthen model reliability and predictive performance. Incorporating advanced estimation
methods into classical linear regression frameworks can substantially improve robustness,
particularly in complex and real-world data environments, thereby contributing to more
accurate and interpretable statistical modelling.
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