



Abstract—A folded Clos network (FCN) is the topology often

used for data center networks. Its performance depends on the

flow diffusion algorithm executed at the input/output switches.

Several algorithms that diffuse flows more equally between

links than conventional random routing have been proposed in

the past. It is expected that those algorithms prevent the TCP

(transmission control protocol) throughput from decreasing

due to traffic congestion. However, it is unclear whether these

flow diffusion algorithms are significantly effective for avoiding

throughput degradation of a TCP flow compared with

conventional random routing. This paper investigates the

effectiveness of flow diffusion algorithms for TCP throughput

through packet-level computer simulation. The results confirm

that flow diffusion algorithms can efficiently reduce the number

of TCP flows, the throughputs of which are degraded.

Index Terms—Computer simulation, data center network,

routing, switching network.

I. INTRODUCTION

Many works have studied data center networks in the past

[1], [2], which typically consider a folded Clos network (FCN)

as their topology [3]–[11] because of its scalability and high

bandwidth. An FCN is based on a three-stage switching

network originally presented by Charles Clos in 1953 [12].

An FCN comprises input/output and middle switches. Each

input/output switch is connected to every middle switch

through a point-to-point link. For data center networks, an

FCN must have an appropriate routing algorithm to avoid

traffic congestion caused by packet streams concentrating on

some links.

Two types of routing methods have been used for FCNs:

per-packet routing [5]–[7] and flow-based routing [8]–[11].

This paper focuses on flow-based routing, which has the

advantage of easily avoiding packet reordering.

One simple flow-based routing method used in several

studies [8], [9], [13] is random routing. With this method, the

source input/output switches randomly select a middle switch

for transmitting a packet as the next hop. Flow-based random

routing can be implemented by a hash function, which maps a

flow identifier to an index of a middle switch.

Alternative routing methods have been presented [10].

They were developed to diffuse flows more equally between

links as compared to random routing. The simulations

showed that these alternative algorithms are superior to

random routing in terms of load equality, which is measured

by the number of flows on a link [10].

It is rational to assess the effectiveness of the

Manuscript received January 31, 2020; revised March 12, 2020. This

work was supported by JSPS KAKENHI Grant Number JP19K11928.

S. Ohta is with Toyama Prefectural University, Kurokawa 5180,

Imizu-shi, Toyama, 939-0398 Japan (e-mail: ohta@pu-toyama.ac.jp).

abovementioned algorithms via the number of flows if a data

center uses TCP (transmission control protocol) based

applications. This is because the throughput of a TCP flow

decreases due to the overload caused by an unbalanced traffic

distribution. However, it is unclear how the improvements

made by the abovementioned algorithms on the flow number

equality can significantly affect the throughput of a TCP

flow.

This paper demonstrates that the algorithms presented in

[10] are advantageous in terms of TCP throughput. To clarify

this point, the study employs computer simulation that

precisely models communication protocols, including TCP

and packet queueing process, on the ns-3 simulation platform

[14]. The simulation compares three algorithms: random

routing, the balancing algorithm, and the load sum algorithm.

The latter two algorithms were presented by [10]. The results

show that the average TCP throughput does not greatly differ

among the algorithms. However, flows with low throughput

are fewer for the balancing and load sum algorithms than that

for random routing. Thus, a user will encounter a degraded

connection with a smaller probability if these algorithms are

employed. This is because the number of overloaded links

becomes smaller with the balancing or load sum algorithm.

The rest of the paper is organized as follows. Section II

describes background information regarding FCN. Section

III reviews related works. Section IV briefly explains the

investigated algorithms and describes the problem. Section V

details the method and model of computer simulation.

Section VI presents the simulation results. Finally, Section

VII concludes the paper.

II. FOLDED CLOS NETWORK

Fig. 1 shows an example of an FCN, which is constructed

by folding a three-stage switching network presented by

Charles Clos in 1953 [12]. An FCN is typically used as the

topology in data center networks. As seen in Fig. 1, an FCN

consists of r input/output switches and m middle switches.

Each input/output switch has n input and output ports. An

input/output switch is connected to every middle switch

through an uplink, while a middle switch is connected to

every input/output switch through a downlink. The middle

switches are indexed as 0, 1, …, m – 1, whereas the

input/output switches are indexed as 0, 1, …, r – 1. This

paper assumes that the FCN handles packet streams. A packet

stream is connected from an input port of a source

input/output switch to an output port of a destination

input/output switch via a middle switch.

In an FCN, a packet can reach its destination from any

middle switch because a middle switch is connected to every

input/output switch. Thus, it can successfully arrive at its

TCP Throughput Achieved by a Folded Clos Network

Controlled by Different Flow Diffusion Algorithms

Satoru Ohta

International Journal of Information and Electronics Engineering, Vol. 10, No. 1, March 2020

16doi: 10.18178/ijiee.2020.10.1.714

destination without depending on the middle switch used as

the next hop of the source switch. However, if source

switches inappropriately forward packets to middle switches,

uplinks or downlinks may be offered excessively heavy load.

Such a heavy load may lead to traffic congestion, which can

degrade the performance of the network. To avoid congestion,

each source switch must run a routing algorithm that diffuses

traffic equally. Thus, it is necessary to establish a traffic

diffusion algorithm to be executed at a source switch.

. . .

. . .

.

. . .
. . .

. . .

m Middle Switches

. . .

r Input/Output
Switches

.

n Input/Output Ports

0 1 m – 1

0 1 r – 1

Fig. 1. Example of a folded Clos network (FCN).

This paper assumes that a packet is routed on a flow basis.

A flow is defined as a stream of packets identified by a set of

fields in the packet header [15]. A field set frequently used

includes a 5-tuple of source address, destination address,

protocol, source port, and destination port, which is

associated with an IP (internet protocol) socket. For

TCP-based applications, a flow is associated with a TCP

connection. By routing packets on a flow basis, packet

reordering is avoided, which is favorable as packet reordering

degrades the TCP’s performance.

III. RELATED WORK

Various studies on FCNs have been done for the data

center network application [4]–[11]. From the aspect of

routing techniques, some studies examined per-packet

routing methods [4]–[6]. Per-packet routing determines the

next hop of a packet on a packet-by-packet basis. Thus,

packets of a flow may pass through routes with different

delays in an FCN. This causes packet reordering. Packet

reordering will degrade the network performance,

particularly when applications run on the TCP protocol. It is

reported that 0.02 % of packets are delivered out of order by

the method of [6]. However, it is uncertain whether this

reordering rate is sufficiently low to avoid performance

degradation.

Packet reordering does not occur for per-flow routing, for

which every packet of a flow passes through the same route.

By equally diffusing flows in an FCN, traffic congestion is

avoided with preventing packets from being delivered out of

order. A simple flow diffusion method is random routing,

which randomly selects the middle switch used as the next

hop for a flow. Examples of random routing can be found in

[8], [9], [13]. This method can be implemented by using a

hash function, which maps a number associated with a flow

to an index of a middle switch. This approach equally

distributes the average number of flows that pass through a

link. However, the number of flows may become large for

some links in the network with a substantial probability [10].

Flows that pass through a heavily loaded link suffer from

performance degradation, including a decrease of throughput

or an increase of latency.

Reference [10] presented algorithms that allow more equal

diffusion of flows between links than random routing; these

are the rebalancing algorithm and the load sum algorithm. A

notable feature of these algorithms is the existence of a

theoretical upper bound on the number of flows passing

through a link, which ensures that the number of flows does

not become excessively large. Reference [10] also

investigated a method called the balancing algorithm, which

is a version of the rebalancing algorithm and does not reroute

existing flows. Through computer simulation, it was shown

that these algorithms outperform conventional random

routing in terms of several statistical metrics associated with

the equality of the number of flows.

Reference [11] showed that the rebalancing and balancing

algorithms in [10] can be further improved in terms of load

equality by employing two modifications: uplink load

balancing and an appropriate choice of the start index for

scanning middle switches. These modifications do not affect

the theoretical upper bound of the number of flows passing

through a link. The improvement was confirmed via

computer simulation.

In [10] and [11], the algorithms were assessed in terms of

the number of flows without considering the individual

bandwidth of each flow. This is rational to some extent for

frequently used TCP-based applications because a TCP flow

is elastic [16]. For elastic flows, the average flow throughput

is limited by the link bandwidth and the number of flows that

commonly share a link. Thus, it is considered that the TCP

throughput will be improved by equally diffusing the number

of flows between links.

While [10] and [11] conducted flow-level computer

simulation, [17] perforned packet-level simulation to

compare different topologies employed in data center

networks. In [17], packet latency and throughput were

evaluated with using the ns-2 [18] simulation platform. It is

expected that this approach is also effective to evaluate the

routing algorithms presented in [10] and [11].

IV. INVESTIGATED METHODS AND PROBLEM DESCRIPTION

This study compares the following flow diffusion

algorithms.

• Random routing

• Balancing algorithm

• Load sum algorithm

Random routing randomly selects the middle switch used

by a flow, which is the method commonly used in previous

studies.

The balancing algorithm is outlined as follows. Let

variable F(i, j, k) denote the number of flows set from the

source switch i (0 1)i r   to the destination switch k

(0 1)k r   via the middle switch j (0 1)j m   . Then,

suppose that a flow is newly generated between the source

switch i and the destination switch k. For this situation, the

International Journal of Information and Electronics Engineering, Vol. 10, No. 1, March 2020

17

algorithm selects the middle switch J (0 1)J m   for the

new flow such that F(i, J, k) is the minimum among F(i, 0, k),

F(i, 1, k), …, F(i, m – 1, k). Meanwhile, the load sum

algorithm utilizes the uplink load Ui, j and the downlink load

Dj, k. Ui, j is defined as the number of flows from the source

switch i to the middle switch j, while Dj, k is defined as the

number of flows from the middle switch j to the destination

switch k. Then, the middle switch J for a newly generated

flow is determined such that the sum Ui, J + DJ, k is the

minimum among Ui, j + Dj, k’s.

A flow-level assessment of these algorithms was

previously performed [10], showing that the balancing and

load sum algorithms outperform random routing.

Additionally, the load sum algorithm diffuses traffic more

equally than the balancing algorithm.

Among data streams exchanged in a data center network,

TCP flows are crucial because many important

application-layer protocols rely on TCP. As mentioned in

Section III, equality in the number of flows will increase TCP

throughput. However, it is unclear how the difference in load

equality estimated by the flow number affects TCP

throughput. Therefore, this paper focuses on the throughput

of a TCP flow (or connection) in an FCN and examines its

dependence on flow diffusion algorithms. This is achieved by

computer simulation, which precisely models the packet

queueing mechanism and TCP/IP protocol.

V. COMPUTER SIMULATIONS

Packet-level computer simulation was performed to

evaluate the effect of flow diffusion algorithms on TCP

throughput using the software products developed in [10] and

[11]. That is, in those studies, the processes of generating

flows and determining the routes of flows were simulated

through the custom programs. This study employed slightly

modified versions of these programs to generate flows and

make a decision of their routes. The simulation program

considers each generated flow as a TCP connection. Through

the connection, bulk data are transmitted with the control by

TCP. Specifically, the simulation is performed through the

following three phases.

Phase 1: In this phase, flows are randomly generated. The

program determines the hosts, between which a TCP

connection is set up. It also decides the start and end time of

the connection.

Phase 2: This phase decides which middle switch is used

for each connection. This decision is made according to the

evaluated flow diffusion algorithms.

Phase 3: For each connection generated in Phase 1, bulk

data are transmitted between the hosts. Packets are routed to

the middle switch determined in Phase 2. Then, the amount of

transmitted data and the throughput are measured for each

TCP connection.

As stated above, Phases 1 and 2 were performed using

modified versions of the custom programs developed in [10]

and [11]. Outputs from the Phase 1 and 2 programs were fed

to the Phase 3 program via a text file. The file created by the

Phase 1 program lists the following flow information: flow

identifier, start time, end time, and two hosts. It also includes

the dimension of the investigated FCN denoted by m, n, and r.

Meanwhile, the Phase 2 program outputs the file that lists the

following: flow identifier, middle switch used by the flow,

and time of setting the route.

The Phase 2 program was written in three versions, each of

which runs an evaluated algorithm. For the balancing

algorithm, the modifications presented in [11] were applied,

which include uplink load balancing and an appropriate

choice of the start index for scanning middle switches. For

the load sum algorithm, the start index of scanning middle

switches was determined similarly to the balancing

algorithm.

The simulation program of Phase 3 was newly developed

in this study. The program was built on the ns-3 network

simulation platform [14] that enables precise simulations of

the protocols, including TCP and the packet queueing

process.

The Phase 3 program was built on the standard API

(application program interface) provided by ns-3. Firstly, it

creates the specified number of switches and hosts by using

the node model. Then, the FCN is constructed by connecting

the nodes using the point-to-point link model.

To simulate the TCP-based application, the bulk transfer

model of ns-3 was employed. According to the Phase 1

output, the application server (sink) and client (sender) are set

up in the hosts. The client application is set to begin and stop

data transmission at the start and end time of the flow,

respectively. The amount of data transferred is obtained as

the statistic of the server. Furthermore, the flow throughput is

obtained by dividing the data amount by the duration of the

flow.

The route of a flow was set by using the fixed routing

model of ns-3. However, the ns-3 model routes a packet

according to its destination address, which means that it is

difficult to route packets using the flow identifier and 5-tuple

of protocol, source/destination addresses, and

source/destination ports. This difficulty can be avoided by

assigning distinct destination hosts to simultaneously

existing flows. Then, a host becomes the destination of a

unique flow during its existing time period. Thus, the route

associated with a flow is successfully simulated by the ns-3

standard routing mechanism, which is based on the

destination address. This setting was achieved by modifying

the Phase 1 program such that a host will not handle two or

more concurrent flows.

To assign distinct hosts to simultaneously existing flows,

there must be a sufficiently large number of hosts. If more

flows simultaneously exist, then more hosts are needed.

Since a host is connected to an input/output switch via a

point-to-point link, the value of parameter n must be large to

supply more hosts. Thus, the parameter n was chosen to be

sufficiently large to provide distinct hosts for simultaneously

existing flows.

The throughput was measured for flows that exist during

the equilibrium by the following steps. Suppose that the

system is in a stable state from time t0 to t1. Then, the

throughput of a flow was measured if its start time is earlier

than t1 and its end time is later than t0.

In the simulations, the parameters m and r were both set to

8. The parameter n was set to 20 for Traffic #1 (light traffic)

and was set to 50 for Traffic #2 (heavy traffic). Thus, the

scale of the FCN is not very large. This is the case because

simulations on ns-3 are very time-consuming and evaluation

International Journal of Information and Electronics Engineering, Vol. 10, No. 1, March 2020

18

on a large FCN is not practical. To decrease the

computational time of ns-3, the number of packet-related

events must be kept low. Hence, the link capacity between

switches was set to 10 Mb/s and the MTU (maximum

transmission unit) size was set to 10000 Bytes; note, however,

that these values may not be very realistic for data centers.

The link capacity was 100 Mb/s between hosts and

input/output switches. The capacity was set higher for this

link because the purpose of the simulation is to assess the

effect of traffic congestion on links between input/output and

middle switches. Thus, the link capacity was set higher

between hosts and input/output switches to not influence the

performance determined by the load between input/output

and middle switches. The simulation model is illustrated in

Fig. 2.

10 Mb/s
Point-to-Point Link

8 Middle Switches

8 Input/Output
Switches

100 Mb/s
Point-to-Point Link

20 or 50 Hosts
per Switch

. . .

. . .

160 or 400 Hosts

. . .
Bulk Data Transfer
Client (Sender)

Bulk Data Transfer
Server (Sink)

Routing
Table

Fig. 2. Simulation setting.

In Phase 1 of the simulation, flows were generated with a

random interval according to an exponential distribution with

an average of T0. The duration of a flow was also randomly

determined according to an exponential distribution with an

average of T1. For a flow, two different source/destination

switches were randomly selected, and the hosts connected to

the switches were chosen. Let a and z denote the selected

hosts. For these hosts, bulk data are transmitted from a to z as

well as from z to a. Therefore, two TCP connections are

established between hosts a and z. This process was repeated

8,000 times. Thus, the number of generated TCP connections

is 16,000 for each data set.

To assess the dependence of the performance of the

algorithms on traffic volume, two traffic models Traffic #1

and #2 were used for testing, which represent light and heavy

traffic load cases, respectively. The parameter T0 was set to

0.5 s for both models, while T1 was set to 160 s for Traffic #1

and 320 s for Traffic #2. For Traffic #1, the expected average

number of bulk data streams in equilibrium is 640

(=2  160/0.5). Since the number of uplinks (or downlinks) is

mr = 64, there is an average of 10 bulk data streams on a 10

Mb/s link. Similarly, the average number of bulk data streams

is 20 on a link for Traffic #2.

For the above traffic models, it was found that the system

is in a stable state from 500 to 4000 s. This is demonstrated in

Fig. 3 that plots the average number of flows on a link versus

simulation time for Traffic #1. Note that every measured flow

should start and stop within the stable state period. Thus, the

measurement start time t0 was set to 2000 s, while the stop

time t1 was set to 3000 s.

0

2

4

6

8

10

12

0 1000 2000 3000 4000 5000

A
ve

ra
ge

 N
u

m
b

er
 o

f
Fl

o
w

s

Simulation Time (s)

Fig. 3. Example of the average number of flows passing a link versus

simulation time for Traffic #1.

For each traffic model, four sets of 16,000 TCP

connections were generated by feeding different random

seeds to the Phase 1 program. The statistics of flows were

calculated from the outputs of the Phase 3 program for the

four flow sets.

VI. EVALUATION RESULTS

Firstly, the average throughput of a flow is compared

between the algorithms for Traffic #1 and #2 in Table I. As

shown in Table I, the average throughput for the load sum

algorithm is the largest, while that for random routing is the

smallest for Traffic #1. However, the difference between the

throughputs for both algorithms is not large. The difference

in the average throughput between the load sum algorithm

and the random routing is as small as 37.4 kb/s for Traffic #1.

For Traffic #2, the difference in the average throughput

among all algorithms is smaller and almost negligible.

Therefore, it is concluded that the difference in the average

throughput is not significant.

TABLE I: AVERAGE THROUGHPUT

Traffic Model
Random

Routing

Balancing

Algorithm

Load Sum

Algorithm

Traffic #1 883.5 kb/s 901.1 kb/s 920.9 kb/s

Traffic #2 470.6 kb/s 475.0 kb/s 474.6 kb/s

Although the balancing and load sum algorithms are not

necessarily advantageous in terms of the average throughput,

their superiority becomes clear in terms of the distribution of

the flow throughput, as shown in Figs. 4 and 5. In both

figures, the x-axis shows the flow throughput, while the

y-axis shows the cumulative percentage of the number of

flows; i.e., the throughputs are equal to or less than x kb/s for

y% of flows. Fig. 4 shows the result for Traffic #1, while Fig.

5 shows the result for Traffic #2.

Figs. 4 and 5 show that the balancing and load sum

algorithms decrease the number of flows with smaller

throughputs in comparison with random routing. This

characteristic is observed in Fig. 6, which shows a zoomed-in

version of Fig. 4 for small throughputs.

International Journal of Information and Electronics Engineering, Vol. 10, No. 1, March 2020

19

0

20

40

60

80

100

0 500 1000 1500

C
u

m
u

la
ti

ve
 P

er
ce

n
ta

ge
 o

f
Fl

o
w

 N
u

m
b

er
 (

%
)

Flow Throughput (kb/s)

Random Routing

Balancing Algorithm

Load Sum Algorithm

Fig. 4. Cumulative percentage of the number of flows versus throughput for

Traffic #1.

0

20

40

60

80

100

0 500 1000 1500

C
u

m
u

la
ti

ve
 P

er
ce

n
ta

ge
 o

f
Fl

o
w

 N
u

m
b

er
 (

%
)

Flow Throughput (kb/s)

Random Routing

Balancing Algorithm

Load Sum Algorithm

Fig. 5. Cumulative percentage of the number of flows versus throughput for

Traffic #2.

0

5

10

15

20

25

0 100 200 300 400 500 600

C
u

m
u

la
ti

ve
 P

er
ce

n
ta

ge
 o

f
Fl

o
w

 N
u

m
b

er
 (

%
)

Flow Throughput (kb/s)

Random Routing

Balancing Algorithm

Load Sum Algorithm

Fig. 6. Cumulative percentage of the number of flows versus throughput for

Traffic #1 for small throughputs.

Assume that the threshold of unacceptable throughput is

600 kb/s for Traffic #1. Hence, from Fig. 6, the ratio of flows

with unacceptably low throughput is 23% for random routing

and decreases to 14% for the balancing algorithm. However,

when the load sum algorithm is employed, the ratio decreases

further to 11%, which is less than half of that for random

routing. Similarly, assume that the threshold of unacceptable

throughput is 300 kb/s for Traffic #2 because the load is twice

as heavy as Traffic #1. Then, the ratios of flows with

unacceptably low throughput are 14% for random routing,

7.6% for the balancing algorithm, and 6.6% for the load sum

algorithm. Thus, the tendency of flows with low throughput

does not greatly change with traffic volume.

From the above results, it is concluded that the balancing

and load sum algorithms can effectively decrease TCP flows

with small throughputs; note that the load sum algorithm is

slightly superior. However, as pointed out in [10], the

implementation of the load sum algorithm is more difficult

because of the communication required between switches.

Thus, the employment of the balancing algorithm is a more

practical solution.

VII. CONCLUSION

This paper assessed the TCP connection throughput of

flow diffusion algorithms from [10] for FCNs. The

investigated algorithms were the balancing algorithm, the

load sum algorithm, and conventional random routing. They

were tested using packet-level computer simulation

performed on the ns-3 simulator to precisely model the

protocols and the packet queueing process. Flow throughput

was measured in terms of the duration and byte amount of

bulk data transmission. The simulation results showed that

the average throughput of a TCP connection does not

significantly differ among the algorithms. However, it was

clarified that the balancing and load some algorithms can

effectively reduce the number of degraded TCP connections,

the throughputs of which are unacceptably decreased by

traffic congestion. Thus, it is concluded that the flow number

equality provided by these flow diffusion algorithms can lead

to less degradation and high-quality TCP services.

As future work, assessment for broader conditions will be

necessary, including simulations for larger FCNs,

heavier/lighter traffic load, and different traffic matrices.

CONFLICT OF INTEREST

The author declares no conflict of interest.

AUTHOR CONTRIBUTIONS

S. Ohta did all the tasks related to this paper.

ACKNOWLEDGMENT

The author would like to thank Kengo Maeda for his help

in the computer simulation. The author would like to thank

Enago (www.enago.jp) for the English language review.

REFERENCES

[1] W. Xia, P. Zhao, Y. Wen, and H. Xie, “A survey on data center

networking (DCN): Infrastructure and operations,” IEEE

Communication Surveys & Tutorials, vol. 19, no. 1, pp. 640–656, First

Quarter 2017.

[2] A. Akella, T. Benson, B. Chandrasekaran, C. Huang, B. Maggs, and D.

Maltz, “A universal approach to data center network design,” in Proc.

2015 International Conference on Distributed Computing and

Networking (ICDCN '15), Jan. 2015, paper 41.

[3] N. Farrington and A. Andreyev, “Facebook’s data center network

architecture,” in Proc. 2013 Optical Interconnects Conference (OI

2013), May 2013, pp. 49–50.

[4] A. Singh et al., “Jupiter rising: A decade of Clos topologies and

centralized control in Google’s datacenter network,” in Proc. the 2015

ACM Conference on Special Interest Group on Data Communication,

Aug. 2015, pp. 183–197.

International Journal of Information and Electronics Engineering, Vol. 10, No. 1, March 2020

20

[5] F. Hassen and L. Mhamdi, “A Clos-network switch architecture based

on partially buffered crossbar fabrics,” in Proc. 2016 IEEE 24th

Annual Symposium on High-Performance Interconnects (HOTI), Aug.

2016, pp. 45–52.

[6] S. Yang, S. Xin, Z. Zhao, and B. Wu, “Minimizing packet delay via

load balancing in Clos switching networks for datacenters,” in Proc.

2016 International Conference on Networking and Network

Applications (NaNA 2016), July 2016, pp. 23–28.

[7] S. Ghorbani, B. Godfrey, Y. Ganjali, and A. Firoozshahian, “Micro

load balancing in data centers with DRILL,” in Proc. the 14th ACM

Workshop on Hot Topics in Networks (HotNets-XIV), Nov. 2015, paper

17.

[8] A. Greenberg et al., “VL2: A scalable and flexible data center

network,” Communications of the ACM, vol. 54, no. 3, pp. 95–104,

Mar. 2011.

[9] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity

data center network architecture,” in Proc. ACM SIGCOMM 2008

Conference on Data Communication, Aug. 2008, pp. 63–74.

[10] S. Ohta, “Flow diffusion algorithms based on local and semi-local

information for folded Clos networks,” in Proc. 4th International

Conference on Electronics and Software Science (ICESS2018), Nov.

2018, pp. 46–54.

[11] S. Ohta, “Techniques to improve a flow diffusion algorithm for folded

Clos networks,” in Proc. the 18th International Conference on

Networks (ICN 2019), Mar. 2019, pp. 68–73.

[12] C. Clos, “A study of nonblocking switching networks,” Bell System

Technical Journal, vol. 32, no. 2, pp. 406–424, Mar. 1953.

[13] S. Scott, D. Abts, J. Kim, and W. J. Dally, “The BlackWidow

high-radix Clos network,” in Proc. the 33rd Annual International

Symposium on Computer Architecture (ISCA ’06), June 2006, pp.

16–28.

[14] Ns developers, ns-3 | a discrete-event network simulator for internet

systems. [Online]. Available: https://www.nsnam.org/

[15] H. A. Kim and D. R. O’Hallaron, “Counting network flows in real

time,” in Proc. IEEE Global Telecommunications Conference

(GLOBECOM 2003), Dec. 2003, pp. 3888–3893.

[16] J. W. Roberts, “Traffic theory and the Internet,” IEEE Communications

Magazine, vol. 39, no. 1, pp. 94–99, Jan. 2001.

[17] A. F. Abdulhameed and R. E. Ahmed, “Performance evaluation of data

center network topologies via NS-2 simulations,” International

Journal of Computing and Digital Systems, vol. 8, no. 6, pp. 625–635,

Nov. 2019.

[18] Ns developers. The Network Simulator - ns-2. [Online]. Available

https://www.isi.edu/nsnam/ns/.

Copyright © 2020 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

Satoru Ohta was born in Yokosuka, Japan on June

11, 1958. He received the B.E., M.E., and Dr. Eng.

degrees from the Tokyo Institute of Technology,

Tokyo, Japan, in 1981, 1983, and 1996,

respectively.

In 1983, he joined NTT, where he worked on

the research and development of cross-connect

systems, broadband ISDN, network management,

and telecommunication network planning. Since

2006, he has been a professor in the Faculty of Engineering at Toyama

Prefectural University, Imizu-shi, Japan. His current research interests

include network performance evaluation, ad hoc networks, and

optimization of data center facilities.

Prof. Ohta is a member of the IEEE, IEICE, and ITE. He received the

Excellent Paper Award in 1991 from IEICE. He also received the Best

Paper Award at the 2019 International Conference on Advanced

Technologies for Communications. He served as a technical program

committee member for several international conferences.

r’s formal photo

International Journal of Information and Electronics Engineering, Vol. 10, No. 1, March 2020

21

https://creativecommons.org/licenses/by/4.0/

