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Abstract—A folded Clos network (FCN) is the topology often 

used for data center networks. Its performance depends on the 

flow diffusion algorithm executed at the input/output switches. 

Several algorithms that diffuse flows more equally between 

links than conventional random routing have been proposed in 

the past. It is expected that those algorithms prevent the TCP 

(transmission control protocol) throughput from decreasing 

due to traffic congestion. However, it is unclear whether these 

flow diffusion algorithms are significantly effective for avoiding 

throughput degradation of a TCP flow compared with 

conventional random routing. This paper investigates the 

effectiveness of flow diffusion algorithms for TCP throughput 

through packet-level computer simulation. The results confirm 

that flow diffusion algorithms can efficiently reduce the number 

of TCP flows, the throughputs of which are degraded. 

 
Index Terms—Computer simulation, data center network, 

routing, switching network.  

 

I. INTRODUCTION 

Many works have studied data center networks in the past 

[1], [2], which typically consider a folded Clos network (FCN) 

as their topology [3]–[11] because of its scalability and high 

bandwidth. An FCN is based on a three-stage switching 

network originally presented by Charles Clos in 1953 [12]. 

An FCN comprises input/output and middle switches. Each 

input/output switch is connected to every middle switch 

through a point-to-point link. For data center networks, an 

FCN must have an appropriate routing algorithm to avoid 

traffic congestion caused by packet streams concentrating on 

some links. 

Two types of routing methods have been used for FCNs: 

per-packet routing [5]–[7] and flow-based routing [8]–[11]. 

This paper focuses on flow-based routing, which has the 

advantage of easily avoiding packet reordering. 

One simple flow-based routing method used in several 

studies [8], [9], [13] is random routing. With this method, the 

source input/output switches randomly select a middle switch 

for transmitting a packet as the next hop. Flow-based random 

routing can be implemented by a hash function, which maps a 

flow identifier to an index of a middle switch. 

Alternative routing methods have been presented [10]. 

They were developed to diffuse flows more equally between 

links as compared to random routing. The simulations 

showed that these alternative algorithms are superior to 

random routing in terms of load equality, which is measured 

by the number of flows on a link [10].  

It is rational to assess the effectiveness of the 
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abovementioned algorithms via the number of flows if a data 

center uses TCP (transmission control protocol) based 

applications. This is because the throughput of a TCP flow 

decreases due to the overload caused by an unbalanced traffic 

distribution. However, it is unclear how the improvements 

made by the abovementioned algorithms on the flow number 

equality can significantly affect the throughput of a TCP 

flow. 

This paper demonstrates that the algorithms presented in 

[10] are advantageous in terms of TCP throughput. To clarify 

this point, the study employs computer simulation that 

precisely models communication protocols, including TCP 

and packet queueing process, on the ns-3 simulation platform 

[14]. The simulation compares three algorithms: random 

routing, the balancing algorithm, and the load sum algorithm. 

The latter two algorithms were presented by [10]. The results 

show that the average TCP throughput does not greatly differ 

among the algorithms. However, flows with low throughput 

are fewer for the balancing and load sum algorithms than that 

for random routing. Thus, a user will encounter a degraded 

connection with a smaller probability if these algorithms are 

employed. This is because the number of overloaded links 

becomes smaller with the balancing or load sum algorithm. 

The rest of the paper is organized as follows. Section II 

describes background information regarding FCN. Section 

III reviews related works. Section IV briefly explains the 

investigated algorithms and describes the problem. Section V 

details the method and model of computer simulation. 

Section VI presents the simulation results. Finally, Section 

VII concludes the paper. 

 

II. FOLDED CLOS NETWORK 

Fig. 1 shows an example of an FCN, which is constructed 

by folding a three-stage switching network presented by 

Charles Clos in 1953 [12]. An FCN is typically used as the 

topology in data center networks. As seen in Fig. 1, an FCN 

consists of r input/output switches and m middle switches. 

Each input/output switch has n input and output ports. An 

input/output switch is connected to every middle switch 

through an uplink, while a middle switch is connected to 

every input/output switch through a downlink. The middle 

switches are indexed as 0, 1, …, m – 1, whereas the 

input/output switches are indexed as 0, 1, …, r – 1. This 

paper assumes that the FCN handles packet streams. A packet 

stream is connected from an input port of a source 

input/output switch to an output port of a destination 

input/output switch via a middle switch. 

In an FCN, a packet can reach its destination from any 

middle switch because a middle switch is connected to every 

input/output switch. Thus, it can successfully arrive at its 
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destination without depending on the middle switch used as 

the next hop of the source switch. However, if source 

switches inappropriately forward packets to middle switches, 

uplinks or downlinks may be offered excessively heavy load. 

Such a heavy load may lead to traffic congestion, which can 

degrade the performance of the network. To avoid congestion, 

each source switch must run a routing algorithm that diffuses 

traffic equally. Thus, it is necessary to establish a traffic 

diffusion algorithm to be executed at a source switch. 

. . .
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. . . . . . . . .

. . .
. . .

. . .

m Middle Switches

. . .

r Input/Output
Switches

. . . . . .
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Fig. 1. Example of a folded Clos network (FCN). 

 

This paper assumes that a packet is routed on a flow basis. 

A flow is defined as a stream of packets identified by a set of 

fields in the packet header [15]. A field set frequently used 

includes a 5-tuple of source address, destination address, 

protocol, source port, and destination port, which is 

associated with an IP (internet protocol) socket. For 

TCP-based applications, a flow is associated with a TCP 

connection. By routing packets on a flow basis, packet 

reordering is avoided, which is favorable as packet reordering 

degrades the TCP’s performance. 

 

III. RELATED WORK 

Various studies on FCNs have been done for the data 

center network application [4]–[11]. From the aspect of 

routing techniques, some studies examined per-packet 

routing methods [4]–[6]. Per-packet routing determines the 

next hop of a packet on a packet-by-packet basis. Thus, 

packets of a flow may pass through routes with different 

delays in an FCN. This causes packet reordering. Packet 

reordering will degrade the network performance, 

particularly when applications run on the TCP protocol. It is 

reported that 0.02 % of packets are delivered out of order by 

the method of [6]. However, it is uncertain whether this 

reordering rate is sufficiently low to avoid performance 

degradation. 

Packet reordering does not occur for per-flow routing, for 

which every packet of a flow passes through the same route. 

By equally diffusing flows in an FCN, traffic congestion is 

avoided with preventing packets from being delivered out of 

order. A simple flow diffusion method is random routing, 

which randomly selects the middle switch used as the next 

hop for a flow. Examples of random routing can be found in 

[8], [9], [13]. This method can be implemented by using a 

hash function, which maps a number associated with a flow 

to an index of a middle switch. This approach equally 

distributes the average number of flows that pass through a 

link. However, the number of flows may become large for 

some links in the network with a substantial probability [10]. 

Flows that pass through a heavily loaded link suffer from 

performance degradation, including a decrease of throughput 

or an increase of latency. 

Reference [10] presented algorithms that allow more equal 

diffusion of flows between links than random routing; these 

are the rebalancing algorithm and the load sum algorithm. A 

notable feature of these algorithms is the existence of a 

theoretical upper bound on the number of flows passing 

through a link, which ensures that the number of flows does 

not become excessively large. Reference [10] also 

investigated a method called the balancing algorithm, which 

is a version of the rebalancing algorithm and does not reroute 

existing flows. Through computer simulation, it was shown 

that these algorithms outperform conventional random 

routing in terms of several statistical metrics associated with 

the equality of the number of flows. 

Reference [11] showed that the rebalancing and balancing 

algorithms in [10] can be further improved in terms of load 

equality by employing two modifications: uplink load 

balancing and an appropriate choice of the start index for 

scanning middle switches. These modifications do not affect 

the theoretical upper bound of the number of flows passing 

through a link. The improvement was confirmed via 

computer simulation. 

In [10] and [11], the algorithms were assessed in terms of 

the number of flows without considering the individual 

bandwidth of each flow. This is rational to some extent for 

frequently used TCP-based applications because a TCP flow 

is elastic [16]. For elastic flows, the average flow throughput 

is limited by the link bandwidth and the number of flows that 

commonly share a link. Thus, it is considered that the TCP 

throughput will be improved by equally diffusing the number 

of flows between links. 

While [10] and [11] conducted flow-level computer 

simulation, [17] perforned packet-level simulation to 

compare different topologies employed in data center 

networks. In [17], packet latency and throughput were 

evaluated with using the ns-2 [18] simulation platform. It is 

expected that this approach is also effective to evaluate the 

routing algorithms presented in [10] and [11]. 

 

IV. INVESTIGATED METHODS AND PROBLEM DESCRIPTION 

This study compares the following flow diffusion 

algorithms. 

• Random routing 

• Balancing algorithm 

• Load sum algorithm 

Random routing randomly selects the middle switch used 

by a flow, which is the method commonly used in previous 

studies.  

The balancing algorithm is outlined as follows. Let 

variable F(i, j, k) denote the number of flows set from the 

source switch i (0 1)i r    to the destination switch k 

(0 1)k r    via the middle switch j (0 1)j m   . Then, 

suppose that a flow is newly generated between the source 

switch i and the destination switch k. For this situation, the 
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algorithm selects the middle switch J (0 1)J m    for the 

new flow such that F(i, J, k) is the minimum among F(i, 0, k), 

F(i, 1, k), …, F(i, m – 1, k). Meanwhile, the load sum 

algorithm utilizes the uplink load Ui, j and the downlink load 

Dj, k. Ui, j is defined as the number of flows from the source 

switch i to the middle switch j, while Dj, k is defined as the 

number of flows from the middle switch j to the destination 

switch k. Then, the middle switch J for a newly generated 

flow is determined such that the sum Ui, J + DJ, k is the 

minimum among Ui, j + Dj, k’s.  

A flow-level assessment of these algorithms was 

previously performed [10], showing that the balancing and 

load sum algorithms outperform random routing. 

Additionally, the load sum algorithm diffuses traffic more 

equally than the balancing algorithm.  

Among data streams exchanged in a data center network, 

TCP flows are crucial because many important 

application-layer protocols rely on TCP. As mentioned in 

Section III, equality in the number of flows will increase TCP 

throughput. However, it is unclear how the difference in load 

equality estimated by the flow number affects TCP 

throughput. Therefore, this paper focuses on the throughput 

of a TCP flow (or connection) in an FCN and examines its 

dependence on flow diffusion algorithms. This is achieved by 

computer simulation, which precisely models the packet 

queueing mechanism and TCP/IP protocol.  

 

V. COMPUTER SIMULATIONS 

Packet-level computer simulation was performed to 

evaluate the effect of flow diffusion algorithms on TCP 

throughput using the software products developed in [10] and 

[11]. That is, in those studies, the processes of generating 

flows and determining the routes of flows were simulated 

through the custom programs. This study employed slightly 

modified versions of these programs to generate flows and 

make a decision of their routes. The simulation program 

considers each generated flow as a TCP connection. Through 

the connection, bulk data are transmitted with the control by 

TCP. Specifically, the simulation is performed through the 

following three phases. 

Phase 1: In this phase, flows are randomly generated. The 

program determines the hosts, between which a TCP 

connection is set up. It also decides the start and end time of 

the connection. 

Phase 2: This phase decides which middle switch is used 

for each connection. This decision is made according to the 

evaluated flow diffusion algorithms. 

Phase 3: For each connection generated in Phase 1, bulk 

data are transmitted between the hosts. Packets are routed to 

the middle switch determined in Phase 2. Then, the amount of 

transmitted data and the throughput are measured for each 

TCP connection. 

As stated above, Phases 1 and 2 were performed using 

modified versions of the custom programs developed in [10] 

and [11]. Outputs from the Phase 1 and 2 programs were fed 

to the Phase 3 program via a text file. The file created by the 

Phase 1 program lists the following flow information: flow 

identifier, start time, end time, and two hosts. It also includes 

the dimension of the investigated FCN denoted by m, n, and r. 

Meanwhile, the Phase 2 program outputs the file that lists the 

following: flow identifier, middle switch used by the flow, 

and time of setting the route. 

The Phase 2 program was written in three versions, each of 

which runs an evaluated algorithm. For the balancing 

algorithm, the modifications presented in [11] were applied, 

which include uplink load balancing and an appropriate 

choice of the start index for scanning middle switches. For 

the load sum algorithm, the start index of scanning middle 

switches was determined similarly to the balancing 

algorithm. 

The simulation program of Phase 3 was newly developed 

in this study. The program was built on the ns-3 network 

simulation platform [14] that enables precise simulations of 

the protocols, including TCP and the packet queueing 

process. 

The Phase 3 program was built on the standard API 

(application program interface) provided by ns-3. Firstly, it 

creates the specified number of switches and hosts by using 

the node model. Then, the FCN is constructed by connecting 

the nodes using the point-to-point link model. 

To simulate the TCP-based application, the bulk transfer 

model of ns-3 was employed. According to the Phase 1 

output, the application server (sink) and client (sender) are set 

up in the hosts. The client application is set to begin and stop 

data transmission at the start and end time of the flow, 

respectively. The amount of data transferred is obtained as 

the statistic of the server. Furthermore, the flow throughput is 

obtained by dividing the data amount by the duration of the 

flow. 

The route of a flow was set by using the fixed routing 

model of ns-3. However, the ns-3 model routes a packet 

according to its destination address, which means that it is 

difficult to route packets using the flow identifier and 5-tuple 

of protocol, source/destination addresses, and 

source/destination ports. This difficulty can be avoided by 

assigning distinct destination hosts to simultaneously 

existing flows. Then, a host becomes the destination of a 

unique flow during its existing time period. Thus, the route 

associated with a flow is successfully simulated by the ns-3 

standard routing mechanism, which is based on the 

destination address. This setting was achieved by modifying 

the Phase 1 program such that a host will not handle two or 

more concurrent flows.  

To assign distinct hosts to simultaneously existing flows, 

there must be a sufficiently large number of hosts. If more 

flows simultaneously exist, then more hosts are needed. 

Since a host is connected to an input/output switch via a 

point-to-point link, the value of parameter n must be large to 

supply more hosts. Thus, the parameter n was chosen to be 

sufficiently large to provide distinct hosts for simultaneously 

existing flows.  

The throughput was measured for flows that exist during 

the equilibrium by the following steps. Suppose that the 

system is in a stable state from time t0 to t1. Then, the 

throughput of a flow was measured if its start time is earlier 

than t1 and its end time is later than t0. 

In the simulations, the parameters m and r were both set to 

8. The parameter n was set to 20 for Traffic #1 (light traffic) 

and was set to 50 for Traffic #2 (heavy traffic). Thus, the 

scale of the FCN is not very large. This is the case because 

simulations on ns-3 are very time-consuming and evaluation 
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on a large FCN is not practical. To decrease the 

computational time of ns-3, the number of packet-related 

events must be kept low. Hence, the link capacity between 

switches was set to 10 Mb/s and the MTU (maximum 

transmission unit) size was set to 10000 Bytes; note, however, 

that these values may not be very realistic for data centers. 

The link capacity was 100 Mb/s between hosts and 

input/output switches. The capacity was set higher for this 

link because the purpose of the simulation is to assess the 

effect of traffic congestion on links between input/output and 

middle switches. Thus, the link capacity was set higher 

between hosts and input/output switches to not influence the 

performance determined by the load between input/output 

and middle switches. The simulation model is illustrated in 

Fig. 2. 

 

10 Mb/s
Point-to-Point Link

8 Middle Switches

8 Input/Output
Switches

100 Mb/s
Point-to-Point Link

20 or 50 Hosts 
per Switch

.  .  .

.  .  .

160 or 400 Hosts

.  .  .
Bulk Data Transfer
Client (Sender)

Bulk Data Transfer
Server (Sink)

Routing 
Table

 
Fig. 2. Simulation setting. 

 

In Phase 1 of the simulation, flows were generated with a 

random interval according to an exponential distribution with 

an average of T0. The duration of a flow was also randomly 

determined according to an exponential distribution with an 

average of T1. For a flow, two different source/destination 

switches were randomly selected, and the hosts connected to 

the switches were chosen. Let a and z denote the selected 

hosts. For these hosts, bulk data are transmitted from a to z as 

well as from z to a. Therefore, two TCP connections are 

established between hosts a and z. This process was repeated 

8,000 times. Thus, the number of generated TCP connections 

is 16,000 for each data set. 

To assess the dependence of the performance of the 

algorithms on traffic volume, two traffic models Traffic #1 

and #2 were used for testing, which represent light and heavy 

traffic load cases, respectively. The parameter T0 was set to 

0.5 s for both models, while T1 was set to 160 s for Traffic #1 

and 320 s for Traffic #2. For Traffic #1, the expected average 

number of bulk data streams in equilibrium is 640 

(=2  160/0.5). Since the number of uplinks (or downlinks) is 

mr = 64, there is an average of 10 bulk data streams on a 10 

Mb/s link. Similarly, the average number of bulk data streams 

is 20 on a link for Traffic #2. 

For the above traffic models, it was found that the system 

is in a stable state from 500 to 4000 s. This is demonstrated in 

Fig. 3 that plots the average number of flows on a link versus 

simulation time for Traffic #1. Note that every measured flow 

should start and stop within the stable state period. Thus, the 

measurement start time t0 was set to 2000 s, while the stop 

time t1 was set to 3000 s. 
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Fig. 3. Example of the average number of flows passing a link versus 

simulation time for Traffic #1. 

 

For each traffic model, four sets of 16,000 TCP 

connections were generated by feeding different random 

seeds to the Phase 1 program. The statistics of flows were 

calculated from the outputs of the Phase 3 program for the 

four flow sets. 

 

VI. EVALUATION RESULTS 

Firstly, the average throughput of a flow is compared 

between the algorithms for Traffic #1 and #2 in Table I. As 

shown in Table I, the average throughput for the load sum 

algorithm is the largest, while that for random routing is the 

smallest for Traffic #1. However, the difference between the 

throughputs for both algorithms is not large. The difference 

in the average throughput between the load sum algorithm 

and the random routing is as small as 37.4 kb/s for Traffic #1. 

For Traffic #2, the difference in the average throughput 

among all algorithms is smaller and almost negligible. 

Therefore, it is concluded that the difference in the average 

throughput is not significant. 

 
TABLE I: AVERAGE THROUGHPUT 

Traffic Model 
Random 

Routing 

Balancing 

Algorithm 

Load Sum 

Algorithm 

Traffic #1 883.5 kb/s 901.1 kb/s 920.9 kb/s 

Traffic #2 470.6 kb/s 475.0 kb/s 474.6 kb/s 

 

Although the balancing and load sum algorithms are not 

necessarily advantageous in terms of the average throughput, 

their superiority becomes clear in terms of the distribution of 

the flow throughput, as shown in Figs. 4 and 5. In both 

figures, the x-axis shows the flow throughput, while the 

y-axis shows the cumulative percentage of the number of 

flows; i.e., the throughputs are equal to or less than x kb/s for 

y% of flows. Fig. 4 shows the result for Traffic #1, while Fig. 

5 shows the result for Traffic #2. 

Figs. 4 and 5 show that the balancing and load sum 

algorithms decrease the number of flows with smaller 

throughputs in comparison with random routing. This 

characteristic is observed in Fig. 6, which shows a zoomed-in 

version of Fig. 4 for small throughputs.  
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Fig. 4. Cumulative percentage of the number of flows versus throughput for 

Traffic #1. 
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Fig. 5. Cumulative percentage of the number of flows versus throughput for 

Traffic #2. 
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Fig. 6. Cumulative percentage of the number of flows versus throughput for 

Traffic #1 for small throughputs. 

Assume that the threshold of unacceptable throughput is 

600 kb/s for Traffic #1. Hence, from Fig. 6, the ratio of flows 

with unacceptably low throughput is 23% for random routing 

and decreases to 14% for the balancing algorithm. However, 

when the load sum algorithm is employed, the ratio decreases 

further to 11%, which is less than half of that for random 

routing. Similarly, assume that the threshold of unacceptable 

throughput is 300 kb/s for Traffic #2 because the load is twice 

as heavy as Traffic #1. Then, the ratios of flows with 

unacceptably low throughput are 14% for random routing, 

7.6% for the balancing algorithm, and 6.6% for the load sum 

algorithm. Thus, the tendency of flows with low throughput 

does not greatly change with traffic volume. 

From the above results, it is concluded that the balancing 

and load sum algorithms can effectively decrease TCP flows 

with small throughputs; note that the load sum algorithm is 

slightly superior. However, as pointed out in [10], the 

implementation of the load sum algorithm is more difficult 

because of the communication required between switches. 

Thus, the employment of the balancing algorithm is a more 

practical solution. 
 

VII. CONCLUSION 

This paper assessed the TCP connection throughput of 

flow diffusion algorithms from [10] for FCNs. The 

investigated algorithms were the balancing algorithm, the 

load sum algorithm, and conventional random routing. They 

were tested using packet-level computer simulation 

performed on the ns-3 simulator to precisely model the 

protocols and the packet queueing process. Flow throughput 

was measured in terms of the duration and byte amount of 

bulk data transmission. The simulation results showed that 

the average throughput of a TCP connection does not 

significantly differ among the algorithms. However, it was 

clarified that the balancing and load some algorithms can 

effectively reduce the number of degraded TCP connections, 

the throughputs of which are unacceptably decreased by 

traffic congestion. Thus, it is concluded that the flow number 

equality provided by these flow diffusion algorithms can lead 

to less degradation and high-quality TCP services. 

As future work, assessment for broader conditions will be 

necessary, including simulations for larger FCNs, 

heavier/lighter traffic load, and different traffic matrices.  
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