
  
Abstract—Finding the dc operating points is an important 

task. Recently, an efficient homotopy method termed the 
Newton fixed-point homotopy method (NFPH) has been 
proposed to find the dc operating points of MOS transistor 
circuits. This method is not only efficient but also globally 
convergent for any initial point. However, how to effectively 
implement the proposed MOS NFPH method has been an open 
problem. In this paper, an effective and practical “Embed” 
implementation algorithm is proposed for the MOS NFPH 
method.Numerical examples show that the MOS NFPH method 
with this proposed “Embed” implementation method is more 
efficient for finding dc operating points than the conventional 
MOS ATAN-SH method. 
 

Index Terms—DC operating point, homotopy method, 
SPICE, circuit simulation. 
 

I. INTRODUCTION 
The first step in simulating a transistor circuit is finding its 

dc operating points. This is a difficult task that involves 
solving nonlinear algebraic equations describing electronic 
circuits. The nonlinearities modeling semiconductor devices 
are of exponential type, and often pose difficulties for 
numerical solvers. SPICE-like circuit simulators [1], widely 
utilized for designing LSI’s, adopt the Newton-Raphson (NR) 
method for solving modified nodal (MN) equations. 
However, due to the local convergence property, the NR 
method or its variants often fail to converge to a solution 
unless the initial estimation point is close enough to the 
solution [2]. To overcome this non-convergence problem, the 
globally convergent homotopy methods have been studied by 
many computer-aided design (CAD) researchers from 
various viewpoints [3]-[8]. 

These studies are divided into three categories, including 
how to construct a homotopy function [3]-[9], how to 
numerically trace a solution curve [10] and how to set an 
initial solution [11]. Moreover, from the viewpoint of 
implementation using the existing SPICE-like simulators, 
there are two types of homotopy functions. The first one, 
which we call Type I, requires no modifications to the 
existing device model subroutines, but only additional 
subroutines, that is, an add-on to the existing circuit 
simulators. The second one, which we call Type II, does 
require some modifications to the model subroutines [7]. In 
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SPICE-like simulators, many practical built-in models for 
semi-conductor devices are contained. These models have 
been and will be further improved for the advancement of 
process technologies. Thus the add-on feature is very 
important for practical implementation. The authors have 
been studying, from the practical standpoint, the Type I 
homotopy functions that can be easily implemented [7]. Note 
that, most previous studies for homotopy methods are mainly 
focused on the bipolar transistor circuits. At present, the 
MOS/Bi-MOS transistor circuits are becoming more and 
more popular in the analog circuit designs. Extending 
homotopy methods to MOS transistor circuits is important 
and urgent [12]-[16]. 

In Ref. [13], a homotopy method based on ATAN-SH 
(Arc-tangent Schichman-Hodges) is proposed for 
MOS-based mixed-signal circuits. In this homotopy method, 
two homotopy parameters are used. Due to these two 
parameters, the simulation becomes complicated and the 
efficiency is not so satisfactory. In this paper, the Newton 
fixed-point homotopy method (NFPH) is presented for MOS 
transistor circuits and it is globally convergent. Moreover, an 
effective and practical “Embed” algorithm for the MOS 
NFPH method and an existence theorem of solution curve 
with this “Embed” algorithm is proposed. At the same time, 
the initial solution algorithm [11] is also considered during 
the implementation based SPICE3 simulator, which 
guarantees high simulation efficiency. 

This paper is organized as follows. In Section II, as 
preliminaries, homotopy method, BDF curve-tracing 
algorithm and ATANSH-based homotopy method are 
presented, followed by the proposed effective and practical 
“Embed” algorithm for the MOS NFPH method in Section III. 
Numerical examples are shown in Section IV. Finally, the 
conclusions are summarized. 

 

II. THE NFPH METHOD FOR MOS TRANSISTOR CIRCUITS 

A. MN Equations of Homotopy Method 
We first review homotopy methods for solving systems of 

nonlinear equations of the form 

( ) 0,f x = ( ) : n nf R R⋅ → .                     (1) 

 

In the MN equation, Eq. (1) is rewritten as follows [6]: 

( , ) ( ) 0,T
g g g Ef v i D g D v D i J+ + =�             (2) 

( ) 0,T
E Ef v D v E− =�                          (3) 

where ( , )T
g Ef f f= , : n N

gf R R→ , : N M
Ef R R→ ,
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( , )T nx v i R= ∈ ,and n N M= + .The variable vector Nv R∈
denotes the node voltages to the datum node and the variable 
vector Mi R∈  denotes the branch currents of the 
independent voltage sources. Also, the continuous function

: K Kg R R→  is a VCCS (voltage-controlled current source) 
type. In addition, 

gD  is an N K×  reduced incidence matrix 

for the g branches and ED  is an N M× reduced incidence 
matrix for the independent voltage source branches. 
Moreover, NJ R∈ is the current vector of the independent 

current sources and ME R∈ is the voltage vector of the 
independent voltage sources. 

In homotopy methods, we consider an auxiliary equation 

0 ( ) 0,f x = 0 : ,n nf R R→                   (4) 

with a known solutionx0 and construct a homotopy 

0( , ) ( ) (1 ) ( ),h x t tf x t f x= + −                (5) 

where 1: n nh R R+ →  and [0,1]t ∈ is the homotopy 
parameter. Then the solution curve of the homotopy equation 

( , ) 0,h x t =                                   (6) 

is traced from the known initial solution 0( ,0)x at 0t = . If 

the solution curve reaches the 1t =  hyper plane at ( ,1)x∗ , 

then a solution x∗  to Eq. (1) is obtained [8]. 

B.  The BDF Curve-Tracing Algorithms 
The solution curve of the homotopy equation can be traced 

by the BDF curve-tracing algorithm [10]. In the BDF 
algorithm, the solution curve is parameterized by its 
arc-length s  and the following system of 
differential-algebraic equations 

( ( )) ( ( ), ( )) 0,h y s h x s t s= =                      (7) 

2 2( ( )) ( ) 1,ii I
x s t s
⋅ ⋅

∈
+ =∑                       (8) 

is solved, we can trace the solution curve of (7) and realize 
the MOS NFPH method [16]. Here,

{1,2, }, ( , )I n I m m n⊆ = ≤  denotes a subset of indices 

of the components of x ,
.

/x dx ds= and
.

/t dt ds= . 
Equation (7) is the homotopy equation and Eq. (8) describes 
the relationship between the arc-length and the components 
of the solution curve projected into an (𝑚+1)-dimensional 
Euclidean space. Based on the solution curve-tracing 
algorithm, the arc length s  is regarded as the main variable 
to steer the simulation. The value t  decides whether the 
simulation should be stopped or not.  

C.  The ATANSH-Based Homotopy Method 
It is a practical homotopy method for MOS transistor 

circuits [13]. The ATAN-SH MOS homotopy model is 
symmetric and bulk referenced. In addition, the model uses 
two homotopy parameters 1λ and 2λ  that take values in [0, 

1]. The form of the drain–source current dsI  for the 
ATAN-SH homotopy method is 

' 2
1 2 1[ ( , , , , )] ( , ),

2ds gs gb db sb db sbI V V V V h V Vb λ λ λ= −    (9) 

where 1λ  controls the drain-source driving-point 

characteristic while 2λ influences the gate on the drain 
current, the transfer characteristic [13]. Since there are two 
homotopy parameters 1λ and 2λ , the homotopy equation

( , )h x t are expanded to 1 2( , , )h x λ λ , 2: n nh R R+ → . Two 
phases are necessary. Therefore, the simulation becomes 
complicated and the efficiency for finding the dc operating 
point is not so satisfactory [15]. 

 

III. THE PROPOSED “EMBED” ALGORITHM OF THE MOS 
NFPH METHOD 

In Ref. [16], the Newton fixed-point homotopy method 
(NFPH) for MOS transistor circuits is proposed. The 
auxiliary function is as follows: 

0 0 0( ) ( ) ( ) ( ),f x f x f x A x x= − + −           (10) 

where  A  is some 𝑛 × 𝑛  matrix and represented as follows 
[16]: 

0
0 1

T
g FP g

dd M

D G D
A

R
 

=  − 
.                (11) 

In Eq. (11), Dg  is a reduced incidence matrix.
( ), 1, 2, , ,FP FPjG diag G j K= =  is a positive 

semi-definition diagonal matrix, whose appropriate diagonal 
elements are positive and the others are zero. Also, ddR is a 

scalar positive value and1M is an M M× identity matrix. 
Then the homotopy is expressed as follows: 

0 0( , ) ( ) (1 ) ( ) (1 )( ),h x t f x t f x t x x= − − + − −   (12) 

Considering a circuit interpretation of the proposed 
homotopy function, the term 0(1 ) ( )t A x x− −  is regarded as 
linear positive resistive elements connected to the original 
circuit. With respect to A , it further has an interpretation that 
each conductance element of FPG  is connected in parallel 
with each branch of appropriate nonlinear branches of g 
andeach resistance element of 1FP MR is connected in series 
with each branch of the independent voltage source branches. 
For the MOS Newton fixed-point homotopy method, the 
initial homotopy circuit for a MOS transistor is shown in Fig. 
1, which can be obtained by the circuit interpretation at 𝑡 = 0 
[16]. In this figure, the conductance elements ,gs gdG G  and 

gbG are connected in parallel with the GS, GD and GB 

branches of MOS transistor M.  
Furthermore, from Eq. (10) and Fig. 1, it is clearly seen 

that the MOS NFPH method is of Type I [7], which is very 
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important for practical implementation. Note that, the 
conductance𝐺𝑔𝑔  between the gate and the body is very 
important for the global convergence theorems of the MOS 
NFPH method. Moreover, from the following theorem, the 
MOS NFPH method is globally convergent. Assuming that 
the solution curve is smooth, the global convergence theorem 
of the MOS NFPH method is as follows [16]. 

 

 
Fig. 1. The initial homotopy circuit for a MOS transistor. 

 
Theorem 1: Consider the Newton fixed-point homotopy 

method for MOS transistor circuits defined by Eqs. (10)-(12). 
Assume that gsG and gdG  are sufficient large, then for any 

initial solution 0 nx R∈  the solution curve of ( , ) 0h x t =

starting from 0( ,0)x reaches 1t = .    
The Proposed “Embed” Implementation Algorithm 
In this work, the MOS Newton fixed-point homotopy 

method is implemented using the source code 
implementation method, which is developed by directly 
adding and modifying some programs on the 
SPICE3F5simulator. Comparing with the net list 
implementation method [8], this source code implementation 
method is more useful and has higher flexibility for the 
reason that the Jacobian matrix scale in this implementation 
method does not be enlarged and the higher efficiency can be 
obtained. 

In this source code implementation method for the MOS 
NFPH method, how to trace solution curve is quite important. 
In this work, the BDF curve tracing algorithm (Section II) is 
used. In the BDF algorithm (Eq. (8)), the arc-length s  is 
regarded as the main variable to steer the simulation. The 
value t decides whether the simulation should be stopped or 
not and the value t  is changed with s . When the condition 
( ) 1t s =  is satisfied, the homotopy method will stop and the 

solution of ( ) 0f x = can be obtained. In the BDF algorithm, 
it is much important to build the curve-tracing equation (Eq. 
(8)). In Eq. (8), the variable ix usually uses the node voltages 
of circuits. However, the dimension of solution curve space 
will be too large for large-scale circuits. In this paper, the 
algorithm named “Embed” is proposed to set up the 
relationship between the circuit variables and the arc s . In 
this “Embed” algorithm, Eq. (8) is extended as 

2( ) ( ) 1,TP x P x t
⋅⋅ ⋅

+ =                           (13) 

where P is some ( )K M n+ ×  matrix represented as 

0
0 1

T
g

M

D
P

 
=  

 
.                             (14) 

It is apparent that T
gD v  denotes the branch voltage vector 

for the K branches. Choosing a branch in this way is called 
setting a “embed” to a branch. Therefore, the solution-tracing 
variable will employ the branch voltage for the MOS 
transistor part, which will largely decrease the dimension of 
solution curve space in large-scale circuits and enhance the 
efficiency of finding the dc operating points.                          

Moreover, the proposed “Embed” algorithm for MOS 
NFPH method is also designed to employ different branches 
of MOS transistor by setting different P in Eq. (13) to 
compare the simulation efficiency in our implementation. 
Here the parameter “embed” is used to denote different 
branches. As for the MOS transistor circuits, when embed=1, 
“Embed” is inserted to MOS transistors between the node 
gate and node drain (GD branch). When embed=2, “Embed” 
is inserted between the node gate and node source (GS 
branch). When embed=3, “Embed” is inserted to both the 
above two positions (GD&GS branches).Furthermore, how 
to implement the proposed “Embed” algorithm in 
constructing the circuit matrix is as follows. As shown in part 
A, the homotopy equation Eq. (12) is composed of the 
original circuit to be solved and the additional terms. Hence, 
the linearized equation of Eq. (6) can be written as  

0 00
. ,

0 0 0H H

J x b
J b

t
      

+ = +      
      

             (15) 

where J0 and b0 are the Jacobian matrix and the excitation 
vector of the original circuit, respectively. HJ and Hb  are the 
Jacobian matrix and the excitation vector of Eq. (8) and the 
additional terms of Eq. (12), respectively. In detail, the 
additional conductances

gsG , 
gdG  and 

gbG can be added to the 

diagonal and minor diagonal positions of circuit Jacobin 

matrix HJ . In Eq. (13), the differential terms 
.
x and

.
t will be 

discretized using the Backward-Euler or Gear numerical 
integration algorithm and then are added to HJ  and Hb  
according to the setting of “embed” parameter. Moreover, the 
initial solution algorithm [11] is also realized in this source 
code implementation method. 
 

IV. NUMERICAL EXAMPLES 
In this work, two example circuits are used to verify the 

effectiveness of our proposed method and they are practically 
used in analog circuit designs. The MOS NFPH method with 
our proposed “Embed” implementation algorithm (embed=1, 
2, 3) is realized. The SPICE3F5 running on Windows XP 
operating system (CPU: 2.5GHz, Memory: 4GB, Compiler: 
Visual C .NET) is applied in our implementations. For 
comparison, the ATANSH-based homotopy method [13] is 
also implemented in the same simulation circumstance.  

The differential pair circuit (the first example) is a basic 
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analog circuit component and widely used in monolithic 
analog circuits. The band gap circuit is commonly used in 
power supply. More details about the two circuits can be 
found in [12]. The simulation results of the two MOS circuits 
are presented in Tables I and Table II. 

 
TABLE I: DIFFERENTIAL PAIR EFFICIENCY COMPARISON 

Differential-pair 
circuit Total Iter Arc Length Step Num 

ATANSH 
homotopy 161 9.4 35 

NFPH (embed=1) 51 3.404 13 
NFPH (embed=2) 38 1.28 10 
NFPH (embed=3) 52 3.48 13 

 
TABLE II: MOS BANDGAP CIRCUIT EFFICIENCY COMPARISON 

Bandgap circuit Total Iter Arc Length Step Num 
ATANSH 
homotopy 306 15.86 62 

NFPH (embed=1) 91 3.16 18 
NFPH (embed=2) 84 1.27 16 
NFPH (embed=3) 84 3.21 18 

 
In Tables I and Table II, three indexes are considered. Here 

Total Iter means the consumed total iteration number in the 
simulation. Step Num means the step number when the 
homotopy parameter t is changed from 0 to 1, and Arc Length 
is the length of the s resulted from the solution curve-tracing 
algorithm. Also, there are four rows for each parameter. The 
row 1 is the result of the ATANSH-based homotopy method. 
The row 2 is the result of the MOS NFPH method with 
embed=1 implementation method. The row 3 is the result of 
embed=2 implementation method and the row 4 is the result 
of embed=3 implementation method. From the simulation 
results of the two example circuits, it is clear that the MOS 
NFPH method with the proposed “Embed” implementation 
algorithm is more efficient for finding the dc operating points 
of MOS circuits than the conventional MOS ATAN-SH 
homotopy method. 

 

V. CONCLUSIONS 
In this paper, an effective and practical “Embed” algorithm 

has been proposed for implementing the MOS NFPH method 
on SPICE. Also the existence theorem of a solution curve 
with the proposed “Embed” algorithm for the MOS NFPH 
method is proposed. Moreover, the initial solution algorithm 
is also considered during the implementation based SPICE3 
simulator, which guarantees high simulation efficiency. The 
test results show that our proposed “Embed” implementation 
algorithm is effective for the MOS NFPH method and the 
simulation efficiency can been improved greatly compared 
with the ATANSH-based homotopy method. Therefore, the 
proposed method will be effective and useful in practical 
circuit simulation. 

ACKNOWLEDGMENT 
The authors would like to thank Professor Yasuaki Inoue 

of Waseda University for his assistance. 

REFERENCES 
[1] L. W. Nagel, “SPICE2: A computer program to simulate 

semiconductor circuits,” Ph.D. dissertation, Univ. California, Berkeley, 
CA, ERL-M520, May 1975. 

[2] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear 
Equations in Several Variables, Academic Press, 1970, pp. 20-23. 

[3] R. C. Melville, L. Trajkovic, S.-C. Fang, and L. T. Watson, “Artificial 
parameter homotopy methods for the DC operating point problem,” 
IEEE Trans. Cornput.-Aided Des. Integrated Circuits & Syst., vol. 12, 
pp. 861-877, June 1993.  

[4] Y. Inoue, “A practical algorithms for DC operating-point analysis of 
large-scale circuits,” Electronics and Communications in Japan, vol. 
77, no. 10, pp. 49-62, 1994. 

[5] K. Yamamura, T. Sekiguchi, and Y. Inoue, “A fixed-point homotopy 
method for solving modified nodal equations,” IEEE Trans. Circuits 
Syst., vol. 46, no. 6, pp.  654-665, 1999. 

[6] L. B. Goldgeisser and M. M. Green, “A method for automatically 
finding multiple operating points in nonlinear circuits,” IEEE Trans. 
Circuits & Syst., vol. 52, no. 4, pp. 776-784, 2005. 

[7] Y. Inoue, S. Kusanobu, K. Yamamura, and M. Ando, “A homotopy 
method using a nonlinear auxiliary function for solving transistor 
circuits,” IEICE Trans. Inf. & Syst., vol. E88-D, no. 7, pp. 1401-1408, 
2005. 

[8] W. Kuroki and K. Yamamura, “An efficient homotopy method that can 
be easily implemented on SPICE,” IEICE Trans. Fundamentals, vol. 
E89-A, no. 11, pp. 3320-3326, 2006. 

[9] M. Tadeusiewicz and S. Hałgas, “A contraction method for locating all 
the DC solutions of circuits containing bipolar transistors,” Circuits 
Syst. Signal Process, vol. 31, pp. 1159-1166, 2012. 

[10] A. Ushida and L. O. Chua, “Tracing solution curves of nonlinear 
equations with sharp turning points,” Int. J. Circuit Theory & 
Applications, vol. 12, pp. 1-21, 1984. 

[11] Y. Inoue, S. Kusanobu, K. Yamamura, and M. Ando, “An initial 
solution algorithm for globally convergent homotopy methods,” IEICE 
Trans. Fundamentals, vol. E87-A, no. 4, pp. 780-786, 2004. 

[12] K. Sako, H. Yu, and Y. Inoue, “A globally convergent method for 
finding DC solutions of MOS transistor circuits,” presented at IEEJ 
International Analog VLSI Workshop 2006, Hangzhou, China, Nov. 
16-18, 2006. 

[13] J. Roychowdhury and R. Melville, “Delivering global DC convergence 
for large mixed-signal circuits via homotopy/continuation methods,” 
IEEE Trans. Comput.-Aided Des. Integr. Circuits & Syst., vol. 25, no. 1, 
pp. 66-78, 2006. 

[14] H. Vazquez-Leal, B. Benhammouda, K. Boubaker, Y. Khan, U. 
Filobello-Nino, R. Castaneda-Sheissa, and R. Ruiz-Gomez, 
“Homotopy-based direct current analysis with formal stop criterion,” 
in Proc. IEEE 57th MWSCAS, 2014, pp. 1009-1012. 

[15] D. Niu, S. Kazutoshi, G. M. Hu, and Y. Inoue, “A globally 
Convergence nonlinear homotopy method for MOS transistor circuits,” 
IEICE Trans. Fundamentals, vol. E95-A, no. 12, pp. 2251-2260, 2012. 

[16] D. Niu, X. Wu, Z. Jin, and Y. Inoue, “An effective and globally 
convergent Newton fixed-point homotopy method for MOS transistor 
circuits,” IEICE Transactions on Fundamentals of Electronics, 
Communications and Computer Sciences, vol. E96-A, no. 9, pp. 
1848-1856, 2013. 
 

Dan Niu was born on April 16, 1986 in Jiangsu province, 
China. He received the B.E. degree in automation from 
Hohai University, Nanjing, China, in 2007. He received 
M.E. degree in automation from Southeast University, 
Nanjing, China, in 2010. He received the Doctor degree at 
Graduate School of Information, Production and Systems, 
Waseda University, Kitakyushu, Japan, in 2013. Since 
2013, he has been an assistant professor at the School of 
Automation, Southeast University. His research interests 

include verification technologies for nonlinear circuits and systems, LSI 
simulation technologies, analog circuit and embedding system designs and 
wireless communications. 
 

Guorui He was born on July 22, 1991 in Jiangsu 
province, China. He received the B.E. degree in 
automation from Southeast University, Nanjing, China, 
in 2013. He is now pursuing the M.E. degree at the school 
of Automation, Southeast University, Nanjing, China. 
His research interests include analog circuit, embedding 
system designs and wireless communications. 

 

International Journal of Information and Electronics Engineering, Vol. 6, No. 1, January 2016

35



Qingshi Ye was born on December 24, 1992 in Fujian 
province, China. He received the B.E. degree in 
automation from Southeast University, Nanjing, China, 
in 2014. He is now pursuing the M.E. degree at the school 
of Automation, Southeast University, Nanjing, China. 
His research interests include analog circuit and 
embedding system designs. 

 
Xiaojun Wang was born on December 3, 1975 in Jiangsu 
province, China. He received the B.E. degree in 
automation from Southeast University, Nanjing, China, in 
1996. He received M.E. degree in automation from 
Southeast University, Nanjing, China, in 2002. He 
received the Doctor degree in automation from Southeast 
University, Nanjing, China, in 2006. Since 2007, he has 
been an assistant professor in the School of Automation, 

Southeast University. His research interests include analog circuit and 
embedding system designs and wireless communications. 

Xingpeng Zhou was born on December 23, 1951 in 
Jiangsu province, China. He received the B.E. degree in 
automation from Southeast University, Nanjing, China, 
in 1978. He received M.E. degree in automation from 
Southeast University, Nanjing, China, in 1982. Since 
1997, he has been a professor at the School of 
Automation, Southeast University. His research interests 
include analog circuit and embedding system designs and 

wireless communications. 

 

International Journal of Information and Electronics Engineering, Vol. 6, No. 1, January 2016

36




