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Abstract—The quality of Electrocardiogram (ECG) signal 

recordings is importantly considered in continuous monitoring 

systems, especially in monitoring systems using wireless devices, 

e.g., wireless Body Sensor Networks (BSNs). Patient’s ECG 

signal recordings with low quality frequently cause in high false 

alarms in the Cardiac Care Unit. Furthermore, ECG signals 

acquired from the wireless BSNs while subjects perform 

activities of daily living (ADLs) can be often deteriorated by 

baseline drift noises and motion artifacts, occurring from human 

body movements. Therefore, for improving the performance of 

continuous monitoring systems using BSNs, low-quality signals 

should be detected and then should be suppressed from the 

systems. This paper presents an automatic approach for signal 

quality classification using a simple instance-based machine 

learning algorithm, i.e., k-Nearest Neighbor (kNN), and 

statistical ECG-based features. In data acquisition, a wireless 

BSN node was used for collecting ECG signals from 10 subjects 

while performing ADLs. For data annotation, the obtained 

signals were divided into small segments (each 5 seconds long) 

and these segments are annotated with good-quality and 

bad-quality labels depending on their signal quality levels. The 

average evaluation results of signal quality classification are 

96.87%, 84.79%, and 98.44%, for accuracy, sensitivity, and 

specificity, respectively. 

 
Index Terms—ECG signal quality classification, wireless 

body sensor networks, machine learning, noise and artifact 

detection.  

 

I. INTRODUCTION 

As reported by the World Health Federation [1], over 70 

percent of all cardiac emergencies, e.g., heart attacks and 

ischaemic strokes, occur in the home. Cardiovascular diseases 

claim 17.1 million lives, which are 82% of deaths occurring in 

low-income and middle-income countries. In order to prevent 

occurrence of such deaths, suitable cardiac monitoring 

systems that can be used for monitoring patients in the home 

environments are thus essentially required, e.g., continuous 

cardiac monitoring systems using wireless devices. In [2]-[5], 

continuous cardiac monitoring systems using wireless ECG 

sensors have been developed, with effective results being 

reported. Nevertheless, ECG signals continuously acquired 

using wireless sensors during activities of daily living (ADLs) 

are frequently deteriorated by several types of noises and 

artifacts, e.g., baseline drift noises and motion artifacts, 

causing from human body movements. These noises and 

artifacts can affect the quality of ECG signals and lead to 

occurring high rates of false alarms in continuous monitoring 
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[6]-[8]. Therefore, for improving the performance of 

continuous ECG monitoring using wireless sensors during 

ADLs, further investigations on classifying noisy signals from 

noiseless signals are required.  

ECG signal quality classification have been reported in 

several studies [9]-[11]. Chudacek et al. [9] developed a noise 

detection system using a rule-base expert system. In order to 

detect common noises and artifacts in ECG signals, e.g., 

baseline drift noises and motion artifacts, features extracted 

from signal amplitudes were employed for constructing 5 

noise classification rules, which were used to detect signal 

quality levels. In [10], Kuzilek et al. proposed a multi-step 

approach for signal quality classification using a 

threshold-based rule and a Support Vector Machine (SVM) 

algorithm. In the first step, statistical features calculated from 

ECG signal amplitudes were used for constructing 6 rules. 

Each rule added one point of a quality score to each signal 

recording when it satisfied the condition. In the second step, a 

SVM classifier with features including kurtosis values and 

covariance matrices was used to determine a quality score of 

each signal recording. In the last step, a signal recording was 

determined whether that recording should be rejected based 

on the quality scores of the previous two steps. In [11], 

Johannesen et al. proposed a multi-step method for 

classifying the quality of ECG signals. Based on signal 

amplitude values, bad-quality signal recordings causing by 

lead connection problems, e.g., large amplitude and signal 

absence, were first exclude. Next, 3 quality scores were 

calculated from the levels of ECG noises. Finally, a rule set 

was used for determining whether a signal recording should 

be accepted.  

In the above studies [9]-[11], ECG signals obtained from 

the Physionet Challenge 2011 database [12], were used for 

their evaluation purposes. The database consists of signal 

recordings captured from normal subjects using mobile 

devices. Further evaluation on ECG signal recordings 

captured while subjects are performing ADLs is thus 

required. 

This paper presents an approach for signal quality 

classification in continuous cardiac monitoring using wireless 

sensors. ECG signals captured using a wireless BSNs from 10 

healthy volunteers while performing 16 ADLs, e.g., standing, 

walking, and jogging, were used for validating the proposed 

approach. To annotate ECG signals with quality levels as 

suggested in [13], the entire signals were divided into small 

segments (each 5 seconds long). Using a k-Nearest Neighbor 

algorithm and statistical features, 5-second ECG segments 

were classified into good-quality and bad-quality levels. 

 

II. DATASET AND SIGNAL ANNOTATION 

In this study, ECG signal recordings were captured though 
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a wireless BSN node from 10 healthy volunteers (7 men and 3 

women), at a sampling rate of 100 Hz. The volunteers were 

monitored 10 minutes for 5 times while they were performing 

ADLs. They were asked to perform 5 non-body-movement 

activities, i.e., sitting, reading, lying, standing, and deep 

breathing, and 11 body-movement activities, i.e., up and 

down movement of the right arm and that of the left arm, up 

and down movement of both arms, jumping, twisting 

left-right-left body movement at the waist, bending forward, 

bending backward, walking, climbing upstairs, climbing 

downstairs, and jogging. Fig. 1 presents the BSN node and the 

experimental setup for signal data collection. 

 

 
Fig. 1. A wireless BSN node with an ECG sensor attached to a human body. 

 

Based on the signal-quality schemes reported in [13], the 

entire ECG signal recordings acquired using BSNs were 

manually annotated with 2 quality levels, i.e., good quality 

(classes A and B in [13]) and bad quality (classes D and E in 

[13]). Signals in each ECG recording were divided into small 

segments, each 5 seconds long, and each of these segments 

was labeled as either high or low quality. Fig. 2 shows 

good-quality and bad-quality signals used in this study. Fig. 3 

presents the distribution of ECG signal quality levels per 

subject. 

III. METHODS 

A. Data Normalization 

For dealing with ECG signals collected from different 

subjects, data normalization is essential in order to transform 

signal-amplitude values from their original values into the 

comparative scales. In this study, the Z-score normalization 

was used and given by  

 

( )
( )

X s
Y s






  

 

where Y(s) and X(s) are the normalized ECG signals and the 

signal amplitude at the s
th

 sample, respectively. µ and σ are 

the mean and the standard deviation of the signals, 

respectively. 

B. Feature Extraction 

As presented in [9]-[11], [14], features relating to signal 

amplitudes can be used for classifying signal quality levels, 

i.e., good-quality and bad-quality levels. In addition, based on 

an observation of signals contaminated by baseline drift 

noises and motion artifacts, the sum of signal amplitudes in 

bad-quality signals was usually larger than the sum of those in 

good-quality signals, as shown in Fig. 2.  

In this study, statistical features extracted from ECG 

signals, e.g., mean, variance, and slope, were thus used. First, 

window-based features were calculated from these statistical 

features of signal amplitudes of small windows, each of which 

was derived over a window of size 0.5 seconds, shifted by 

0.25 seconds at each processing step. Then, segment-based 

features (5 seconds per one segment) were extracted from the 

statistical features of all individual windows and used as 

features representing the 5-second segment. Total of 40 

segment-based features were extracted, i.e., 36 features 

calculated from window-based feature and 4 segment-based 

features directly derived from statistical values of signal 

amplitudes in 5-second segments. 

 

 
Fig. 2. Examples of ECG signals employed in this study: A good-quality signal portion (a) compared with bad-quality poritons distorioated by motion artifacts 

(b) and baseline drift noises (c). 
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Fig. 3. Distribution of ECG signal quality per subject. 

 

C. Machine-Learning-Based Classification 

A simple instance-based learning, a k-nearest neighbor 

(kNN) algorithm, was used in this study for constructing 

signal quality classification models. The kNN is one of the 

most effective non-parmetric. It was also applied in several 

works relating to ECG signals, e.g., for arrhythmia 

classification [15]-[17] and for signal quality classification 

[18]. To implement the kNN algorithm, an IBk algorithm in 

Weka API [19] was employed. The values of k=1, 3, and 5 

were used to construct IBk classifiers for determining the 

optimal value of k for signal quality classification.  

In order to evaluate the performance of each classification 

model, a 10-fold cross validation method was used. The 

whole dataset (2,506 segments) was divided into 10 parts, 

each having almost the same distribution of samples from 

each signal-quality labels. Nine sets (2,250 segments) were 

used for training the classification models and the remaining 

one set was used for testing and performance evaluation. The 

process was repeated 10 times and the overall performance of 

a classifier was calculated by taking the average of 10 folds.  

D. Performance Measurement 

To measure the performance of each classification model, 

three standard statistical measures, i.e., Accuracy, Sensitivity, 

and Specificity, are used [17]. They are defined as: 
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where True Positive (TP) and True Negative (TN) are the 

number of signal segments correctly predicted as 

―bad-quality‖ and ―good-quality‖, respectively. False 

Positive (FP) and False Negative (FN) are the number of 

signal segments incorrectly predicted as ―bad-quality‖ and 

―good-quality‖, respectively.  

IV. EXPERIMENTAL RESULTS 

Using 10-fold cross validation, Table I presents a 

performance comparison of the kNN algorithms with varying 

values of k. Based on kNN with k=1 and 5, the obtained 

accuracy, sensitivity, and specificity values were 96.69%, 

85.02%, and 98.20%, respectively. Using kNN with k=3, the 

accuracy of 97.25%, the sensitivity of 84.32%, and the 

specificity of 98.92% were obtained. The average accuracy, 

sensitivity, and specificity values were 96.87%, 84.79%, and 

98.44%, respectively.  

 
TABLE I: SIGNAL QUALITY CLASSIFICATION EXPERIMENTAL RESULTS 

kNN  

Classifier 
Predicted Measurement 

 Bad Good Accuracy Sensitivity  Specificity 

k=1 244 43 
96.69% 85.02% 

98.20% 

 40 2179  

k=3 242 45 
97.25% 84.32% 

98.92% 

 24 2195  

k=5 244 43 
96.69% 85.02% 

98.20% 

 40 2179  

Average Results 96.87% 84.79% 98.44% 

 

The obtained results show that the proposed method can 

dependably classify ECG signals captured from wireless 

BSNs while subjects were performing daily routine activities, 

with the accuracy of more than 96%, the sensitivity of more 

than 84%, and the specificity of more than 98%. Fig. 4 shows 

a performance comparison among the k-NN classifiers with 

varying k values, k = 1, 3, and 5. 

 

 
Fig. 4. Performance comparison of signal quality classification using the 

kNN classifiers with varying k values. 
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V. CONCLUSION 

The automatic kNN-based approach for classifying signal 

quality levels in continuous wireless ECG monitoring has 

been proposed. In this study, ECG datasets captured from 

human subjects using wireless BSNs were employed. The 

subjects were asked to perform 16 different ADLs, e.g., 

sitting, standing, lying, walking, and jogging, in order to 

create actual noises in free-living environments. The 

proposed work is different from existing works in the 

literature that used noisy ECG signals added by mathematic 

methods. In order to develop continuous monitoring systems 

using wireless sensors, signals contaminated by noises and 

artifacts occurring from subjects’ body movements should 

therefore be taken into account.  

For constructing signal quality classification models, the 

kNN algorithm, which is a simple instance-based learning 

algorithm and easy to implement in limited-resource devices, 

was used. Using 10-fold cross validation, the average 

obtained results are an accuracy of 96.87%, a sensitivity of 

84.79%, and a specificity of 98.44%. The evaluation results 

showed that the proposed approach can possibly be used for 

classifying quality levels of ECG signals acquired from 

wireless sensors and be applied for false alarm reduction in 

continuous monitoring systems. 

ACKNOWLEDGMENT 

I would like to express my deep gratitude to Associate 

Professor Dr. Ekawit Nantajeewarawat at Thammasat 

University and Assistant Professor Dr. Surapa Thiemjarus at 

National Electronics and Computer Technology Center for 

their patient guidance, enthusiastic encouragement, and 

useful critiques of this research work. My grateful thanks are 

also extended to Mr. Natthapon Phannurat for his help in 

collecting data used in this research experiments. 

I would also like to extend my thanks to Prof. Huan Liu and 

the staffs of the Data Mining and Machine Learning 

laboratory at Arizona State University for their help in 

offering me the resources in running the program and writing 

this research paper. 

REFERENCES 

[1] World Heart Day. [Online]. Available: 

http://www.world-heart-federation.org/what-we-do/awareness/world-

heart-day/one-heart/ 

[2] J. J. Oresko, Z. Jin, J. Cheng, S. Huang, Y. Sun, H. Duschl, and A. C. 

Cheng, ―A wearable smartphone-based platform for real-time 

cardiovascular disease detection via electrocardiogram processing,‖ 

IEEE Trans. Inf. Technol. B., vol. 14, pp. 734-40, 2010. 

[3] C. T. Lin, K. C. Chang, C. L. Lin, C. C. Chiang, S. W. Lu, S. S. Chang, 

B. S. Lin, H. Y. Liang, R. J. Chen, Y. T. Lee, and L. W. Ko, ―An 

intelligent telecardiology system using a wearable and wireless ECG to 

detect atrial fibrillation,‖ IEEE Trans. Inf. Technol. Biomed., vol. 14, 

pp. 726-33, 2010. 

[4] S. Winkler, M. Schieber, S. Lücke, P. Heinze, T. Schweizer, D. 

Wegertseder, M. Scherf, H. Nettlau, S. Henke, M. Braecklein, S. D. 

Anker, and F. Koehler, ―A new telemonitoring system intended for 

chronic heart failure patients using mobile telephone technology — 

feasibility study,‖ Int. J. Cardiol., vol. 153, pp. 55-58, 2011. 

[5] A. Andreoli, R. Gravina, R. Giannantonio, P. Pierleoni, and G. Fortino, 

―SPINE-HRV: A BSN-based toolkit for heart rate variability analysis 

in the time-domain,‖ Wearable and Autonomous Biomedical Devices 

and Systems for Smart Environment (Lecture Notes in Electrical 

Engineering), vol. 75, pp. 369–389, 2010. 

[6] S. Lawless, ―Crying wolf: False alarms in a pediatric intensive care 

unit,‖ Crit. Care. Med., vol. 22, pp. 981-985, 1994. 

[7] C. L. Tsien and J. C. Fackler, ―Poor prognosis for existing monitors in 

the intensive care unit,‖ Crit. Care. Med., vol. 25, pp. 614-619, 1997. 

[8] F. Schmid, M. S. Goepfert, and D. A. Reuter, ―Patient monitoring 

alarms in the ICU and in the operating room,‖ Crit. Care., vol. 17, pp. 

216-222, 2013. 

[9] V. Chudacek, L. Zach, J. Kuzilek, J. Spilka, and L. Lhotska, ―Simple 

scoring system for ECG quality assessment on android platform,‖ in 

Proc. the Computing in Cardiology Conference, Hangzhou, China, 

2011, pp. 449-451. 

[10] J. Kuzilek, M. Huptych, V. Chudacek, J. Spilka, and L. Lhotska, ―Data 

driven approach to ECG signal quality assessment using multistep 

SVM classification,‖ in Proc. the Computing in Cardiology 

Conference, Hangzhou, China, 2011, pp. 435-455. 

[11] L. Johannesen and L. Galeotti, ―Automatic ECG quality scoring 

methodology: Mimicking human annotators,‖ Physiol. Meas., vol. 33, 

pp. 1479-89, 2012. 

[12] I. Silva, G. B. Moody, and L. Celi, ―Improving the quality of ECGs 

collected using mobile phones: The PhysioNet/Computing in cardio- 

logy challenge 2011,‖ in Proc. the Computing in Cardiology 

Conference, Hangzhou, China, 2011, pp. 273-276. 

[13] G. D. Clifford, D. Lopez, Q. Li, and I. Rezek, ―Signal quality indices 

and data fusion for determining clinical acceptability of 

electrocardiograms,‖ Physiol. Meas., vol. 33, pp. 1419-33, 2012. 

[14] H. Naseri and M. R. Homaeinezhad, ―Electrocardiogram signal quality 

assessment using an artificially reconstructed target lead,‖ Comput. 

Methods Biomech. Biomed. Engin., vol. 18, pp. 1126-41, 2014. 

[15] Y. Kutlu and D. Kuntalp, ―A multi-stage automatic arrhythmia 

recognition and classification system,‖ Comput. Biol. Med., vol. 41, pp. 

37-45, 2011. 

[16] I. Christov, I. Jekova, and G. Bortolan, ―Premature ventricular 

contraction classification by the kth nearest-neighbours rule,‖ Physiol. 

Meas., vol. 26, pp. 123-30, 2005. 

[17] T. Tanantong, E. Nantajeewarawat, and S. Thiemjarus, ―Toward 

continuous ambulatory monitoring using a wearable and wireless 

ECG-recording system: A study on the effects of signal quality on 

arrhythmia detection,‖ Bio-Med. Mater. Eng., vol. 24, pp. 391-404, 

2014. 

[18] S. Begum, M. S. Islam, M. U. Ahmed, and P. Funk, ―K-NN based 

interpolation to handle artifacts for heart rate variability analysis,‖ in 

Proc. the IEEE International Symposium on Signal Processing and 

Information Technology, Bilbao, Spain, 2011, pp. 387-92. 

[19] I. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical Machine 

Learning Tools and Techniques, 3rd Ed., Burlington: Morgan 

Kaufmann/Elsevier, 2005. 

 
Tanatorn Tanantong received the B.E. and M.E. 

degrees in engineering (computer engineering) from 

Suranaree University of Technology, Nakhon 

Ratchasima, Thailand, in 2005 and 2008, 

respectively, then received the Ph.D. degree in 

technology (computer science program) from 

Sirindhorn International Institute of Technology, 

Thammasat University, Pathum Thani, Thailand in 

2014.  

He is a lecturer and currently the head of Medical Informatics Department, 

College of ICT, Rangsit University. Previously, he was an engineer for 

Synchrotron Light Research Institute (Public Organization), and Seagate 

Technology (Thailand) Ltd. His research interests include continuous 

monitoring systems using wireless sensors, machine learning, data mining, 

pattern recognition, and knowledge representation. 

Dr. Tanatorn is a member of Artificial Intelligence Association of 

Thailand. He is a reviewer for IEEE Journal of Biomedical and Health 

Informatics and Computers in Biology and Medicine Journal. 

 

International Journal of Information and Electronics Engineering, Vol. 6, No. 4, July 2016

272


