A kNN Approach for ECG Signal Quality Classification
Keywords:
—ECG signal quality classification, wireless body sensor networks, machine learning, noise and artifact detection.Abstract
The quality of Electrocardiogram (ECG) signal
recordings is importantly considered in continuous monitoring systems, especially in monitoring systems using wireless devices, e.g., wireless Body Sensor Networks (BSNs). Patient’s ECG signal recordings with low quality frequently cause in high false alarms in the Cardiac Care Unit. Furthermore, ECG signals acquired from the wireless BSNs while subjects perform activities of daily living (ADLs) can be often deteriorated by baseline drift noises and motion artifacts, occurring from human body movements. Therefore, for improving the performance of continuous monitoring systems using BSNs, low-quality signals should be detected and then should be suppressed from the systems. This paper presents an automatic approach for signal quality classification using a simple instance-based machine learning algorithm, i.e., k-Nearest Neighbor (kNN), and statistical ECG-based features. In data acquisition, a wireless BSN node was used for collecting ECG signals from 10 subjects while performing ADLs. For data annotation, the obtained signals were divided into small segments (each 5 seconds long) and these segments are annotated with good-quality and bad-quality labels depending on their signal quality levels. The average evaluation results of signal quality classification are 96.87%, 84.79%, and 98.44%, for accuracy, sensitivity, and specificity, respectively.
Downloads
Downloads
Published
Issue
Section
License
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.